ferrinetal_c&nmediatewarmingimpactonsoilhexapods

This study was conducted at the ForHot research site in Iceland (Sigurdsson et al., 2016) between August 2017 and June 2018 (64°0′N, 21°11′W). Soil type was a Brown Andosol (Arnalds, 2015). Mean annual temperature at the site was 5.1 °C. The coldest and warmest temperatures in the neighboring villag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ferrín Guardiola, Miquel, Penuelas, Josep, Gargallo-Garriga, Albert, Iribar, Amaia, Janssens, Ivan, Marañón-Jiménez, Sara, Murienne, Jérôme, Richter, Andreas, Sigurdsson, Bjarni D., Peguero, Guille
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study was conducted at the ForHot research site in Iceland (Sigurdsson et al., 2016) between August 2017 and June 2018 (64°0′N, 21°11′W). Soil type was a Brown Andosol (Arnalds, 2015). Mean annual temperature at the site was 5.1 °C. The coldest and warmest temperatures in the neighboring village of Eyrarbakki in 2016 were -12.3 °C and 21.6 °C, respectively. Average annual precipitation for the same year was 1153 mm (Icelandic Meteorological Office, 2016). The vegetation was an unmanaged grassland dominated by Agrostis capillaris L., Galium boreale L. and Anthoxantum odoratum L. Vascular plants cover 46% of the area over a moss mat which covers up to 88% of the ground. This grassland has been geothermally warmed since 29 May 2008, when an earthquake transferred geothermal energy from hot groundwater to previously unheated soils (Sigurdsson et al., 2016). Belowground temperatures at 10 cm depth now display a permanent warming gradient reaching +10 °C, with a discreet increase in aboveground temperature of +0.2 °C. The warming has only been mildly disruptive, with seasonality remaining unchanged. Soil humidity was only marginally affected, with volumetric water content changing from 40% to 38%, and water pH increased from 5.6 in unheated soil to up to 6.3 after warming. Geothermal groundwater has remained in the bedrock and has not reached the root zone, thus avoiding direct eco-toxicological effects (Sigurdsson et al., 2016). The resulting stable conditions and lack of artifacts provide a realistic natural belowground experiment on soil warming under climate change. Natural N deposition in the area is 1.3 ± 0.1kg N ha-1 y-1 (Leblans et al., 2014). Five transects were established, each one consisting of three 2 x 2 m plots, and each plot at different temperature: an unheated control, a low warming level of ca. +3 °C and a higher warming level of ca. +6 °C above the ambient reference in the control (henceforth referred as “+3 °C” and “+6 °C”). Soil cores were collected using an auger to a depth of ~10 cm, excluding the O horizon. Soil cores were sampled seasonally four times: August 2017, corresponding to late growing season; November 2017, at start of winter and initial soil freezing; April 2018, with the first soil thaw in un-warmed soils, and June 2018, in the early part of the growing season. We thus collected a total of 20 core samples for each warming treatment (5 replicates in 4 seasons for 3 temperature levels = 60 samples). All samples were immed
DOI:10.6084/m9.figshare.21487611