Database (splitted 4/9)

The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Losing, Viktor, Hasenjäger, Martina
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Losing, Viktor
Hasenjäger, Martina
description The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body Lycra suit with 17 IMU sensors, insoles with eight pressure sensing cells per foot, and a mobile eye tracker. They completed three different walk courses, where each trial consisted of several minutes of walking, including a variety of common elements such as ramps, stairs, and pavements. The data is annotated in detail to enable machine-learning-based analysis and prediction.
doi_str_mv 10.6084/m9.figshare.20224011
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_20224011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_20224011</sourcerecordid><originalsourceid>FETCH-LOGICAL-d911-9288377068a17fcaece195677fb055cdc5be1bbebf64278ed9f41bb0a0d366763</originalsourceid><addsrcrecordid>eNo1zj1vwjAUhWEvDAiYWTow0iHhXsfxx1jxLUXqwm5d29c0EpFQkqX_vlTAdPQuR48QHwilBqs2nStzex1-qOdSgpQKEKdiuaORAg28Wg_3WzuOnFZq4z7nYpLpNvDitTNxOewv21PRfB_P26-mSA6xcNLayhjQltDkSBwZXa2NyQHqOqZYB8YQOGStpLGcXFaPBoJUaW10NRPqeZsejNiO7O9921H_6xH8P9t3zr_Z_s2u_gBVXDwt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Database (splitted 4/9)</title><source>DataCite</source><creator>Losing, Viktor ; Hasenjäger, Martina</creator><creatorcontrib>Losing, Viktor ; Hasenjäger, Martina</creatorcontrib><description>The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body Lycra suit with 17 IMU sensors, insoles with eight pressure sensing cells per foot, and a mobile eye tracker. They completed three different walk courses, where each trial consisted of several minutes of walking, including a variety of common elements such as ramps, stairs, and pavements. The data is annotated in detail to enable machine-learning-based analysis and prediction.</description><identifier>DOI: 10.6084/m9.figshare.20224011</identifier><language>eng</language><publisher>figshare</publisher><subject>FOS: Clinical medicine ; Neuroscience ; Vision Science</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.20224011$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Losing, Viktor</creatorcontrib><creatorcontrib>Hasenjäger, Martina</creatorcontrib><title>Database (splitted 4/9)</title><description>The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body Lycra suit with 17 IMU sensors, insoles with eight pressure sensing cells per foot, and a mobile eye tracker. They completed three different walk courses, where each trial consisted of several minutes of walking, including a variety of common elements such as ramps, stairs, and pavements. The data is annotated in detail to enable machine-learning-based analysis and prediction.</description><subject>FOS: Clinical medicine</subject><subject>Neuroscience</subject><subject>Vision Science</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1zj1vwjAUhWEvDAiYWTow0iHhXsfxx1jxLUXqwm5d29c0EpFQkqX_vlTAdPQuR48QHwilBqs2nStzex1-qOdSgpQKEKdiuaORAg28Wg_3WzuOnFZq4z7nYpLpNvDitTNxOewv21PRfB_P26-mSA6xcNLayhjQltDkSBwZXa2NyQHqOqZYB8YQOGStpLGcXFaPBoJUaW10NRPqeZsejNiO7O9921H_6xH8P9t3zr_Z_s2u_gBVXDwt</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Losing, Viktor</creator><creator>Hasenjäger, Martina</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220728</creationdate><title>Database (splitted 4/9)</title><author>Losing, Viktor ; Hasenjäger, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d911-9288377068a17fcaece195677fb055cdc5be1bbebf64278ed9f41bb0a0d366763</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>FOS: Clinical medicine</topic><topic>Neuroscience</topic><topic>Vision Science</topic><toplevel>online_resources</toplevel><creatorcontrib>Losing, Viktor</creatorcontrib><creatorcontrib>Hasenjäger, Martina</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Losing, Viktor</au><au>Hasenjäger, Martina</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Database (splitted 4/9)</title><date>2022-07-28</date><risdate>2022</risdate><abstract>The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body Lycra suit with 17 IMU sensors, insoles with eight pressure sensing cells per foot, and a mobile eye tracker. They completed three different walk courses, where each trial consisted of several minutes of walking, including a variety of common elements such as ramps, stairs, and pavements. The data is annotated in detail to enable machine-learning-based analysis and prediction.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.20224011</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.20224011
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_20224011
source DataCite
subjects FOS: Clinical medicine
Neuroscience
Vision Science
title Database (splitted 4/9)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Losing,%20Viktor&rft.date=2022-07-28&rft_id=info:doi/10.6084/m9.figshare.20224011&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_20224011%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true