A human blastocyst dataset including clinical annotations to benchmark deep learning architectures for in vitro fertilization

The dataset contains static morphology images of human blastocyts on day 5 post insemination, additional annotations, an example prediction of an XCeption model trained on the silver-standard data and a script to evaluate automated predictions. Additional annotations include the expert-annotated sco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kromp, Florian, Wagner, Raphael, Balaban, Basak, Cottin, Veronique, Saiz, Irene Cuevas, Dacho, Clara, Fancsovits, Peter, Fawzy, Mohamed, Fischer, Lukas, Findikli, Necati, Kovacic, Borut, Ljiljak, Dejan, Rodero, Iris Martinez, Parmegiani, Lodovico, Shebl, Omar, Min, Xie, Ebner, Thomas
Format: Bild
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kromp, Florian
Wagner, Raphael
Balaban, Basak
Cottin, Veronique
Saiz, Irene Cuevas
Dacho, Clara
Fancsovits, Peter
Fawzy, Mohamed
Fischer, Lukas
Findikli, Necati
Kovacic, Borut
Ljiljak, Dejan
Rodero, Iris Martinez
Parmegiani, Lodovico
Shebl, Omar
Min, Xie
Ebner, Thomas
description The dataset contains static morphology images of human blastocyts on day 5 post insemination, additional annotations, an example prediction of an XCeption model trained on the silver-standard data and a script to evaluate automated predictions. Additional annotations include the expert-annotated scores of the morphological grading system according to Gardner (cell expanstion, quality of inner cell mass and trophectoderm), used to rate blastocyst quality by assessing these morphological parameters as basis for the selection of blastocysts for transfer, and clinical outcomes such as fetal heart beat or healthy live birth. To allow researchers to benchmark novel machine learning-based algorithms trained to predict the Gardner scores, each image is assigned to one of two splits: a training- or a test set split. The training split was annotated by an experienced embryologist with long-time experience on how to apply the Gardner criteria to static morphology blastocyst images. The test set split contains annotations of the three Gardner criteria based on the agreement of an international consortium of experienced clinical embryologists. In summary, the dataset contains blastocyst images, a python script to evaluate model predictions, and four CSV-files including: i. the assignment of images to a training set including silver-standard annotations of all three Gardner criteria, ii.the assignment of images to the Gardner criteria test set including gold-standard annotations of all three Gardner criteria, iii. the assignment of images to the clinical dataset and thus, the images of blastocysts that had been transferred including their clinical annotations and iv. an example prediction by an XCeption-based trained deep learning model.
doi_str_mv 10.6084/m9.figshare.20123153
format Image
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_20123153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_20123153</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_201231533</originalsourceid><addsrcrecordid>eNqdj0FOw0AMRWfTBaK9AQtfoCFpUtQuEaLiAOxH7sRpLCaeyuMgtRJ3J0H0Al39zf9P_zn3VJXFS7lrnod90fEp96hUbMpqU1fb-sH9vEI_DihwjJgthUs2aNEwkwFLiGPLcoIQWThgBBRJhsZJMliCI0noB9QvaInOEAlV5j5q6Nko2KiUoUs6seCbTRN0pMaRr3-QpVt0GDOt_vPRNYf3z7eP9XwhTAR_Vp74F1-Vfrbww97fLPzNor5z9gsVUl6U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>A human blastocyst dataset including clinical annotations to benchmark deep learning architectures for in vitro fertilization</title><source>DataCite</source><creator>Kromp, Florian ; Wagner, Raphael ; Balaban, Basak ; Cottin, Veronique ; Saiz, Irene Cuevas ; Dacho, Clara ; Fancsovits, Peter ; Fawzy, Mohamed ; Fischer, Lukas ; Findikli, Necati ; Kovacic, Borut ; Ljiljak, Dejan ; Rodero, Iris Martinez ; Parmegiani, Lodovico ; Shebl, Omar ; Min, Xie ; Ebner, Thomas</creator><creatorcontrib>Kromp, Florian ; Wagner, Raphael ; Balaban, Basak ; Cottin, Veronique ; Saiz, Irene Cuevas ; Dacho, Clara ; Fancsovits, Peter ; Fawzy, Mohamed ; Fischer, Lukas ; Findikli, Necati ; Kovacic, Borut ; Ljiljak, Dejan ; Rodero, Iris Martinez ; Parmegiani, Lodovico ; Shebl, Omar ; Min, Xie ; Ebner, Thomas</creatorcontrib><description>The dataset contains static morphology images of human blastocyts on day 5 post insemination, additional annotations, an example prediction of an XCeption model trained on the silver-standard data and a script to evaluate automated predictions. Additional annotations include the expert-annotated scores of the morphological grading system according to Gardner (cell expanstion, quality of inner cell mass and trophectoderm), used to rate blastocyst quality by assessing these morphological parameters as basis for the selection of blastocysts for transfer, and clinical outcomes such as fetal heart beat or healthy live birth. To allow researchers to benchmark novel machine learning-based algorithms trained to predict the Gardner scores, each image is assigned to one of two splits: a training- or a test set split. The training split was annotated by an experienced embryologist with long-time experience on how to apply the Gardner criteria to static morphology blastocyst images. The test set split contains annotations of the three Gardner criteria based on the agreement of an international consortium of experienced clinical embryologists. In summary, the dataset contains blastocyst images, a python script to evaluate model predictions, and four CSV-files including: i. the assignment of images to a training set including silver-standard annotations of all three Gardner criteria, ii.the assignment of images to the Gardner criteria test set including gold-standard annotations of all three Gardner criteria, iii. the assignment of images to the clinical dataset and thus, the images of blastocysts that had been transferred including their clinical annotations and iv. an example prediction by an XCeption-based trained deep learning model.</description><identifier>DOI: 10.6084/m9.figshare.20123153</identifier><language>eng</language><publisher>figshare</publisher><subject>Artificial intelligence not elsewhere classified ; Reproductive medicine not elsewhere classified</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2450-6749 ; 0000-0001-5303-6638 ; 0000-0001-7057-2045 ; 0000-0003-1717-1490 ; 0000-0002-9587-0492</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1887</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.20123153$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kromp, Florian</creatorcontrib><creatorcontrib>Wagner, Raphael</creatorcontrib><creatorcontrib>Balaban, Basak</creatorcontrib><creatorcontrib>Cottin, Veronique</creatorcontrib><creatorcontrib>Saiz, Irene Cuevas</creatorcontrib><creatorcontrib>Dacho, Clara</creatorcontrib><creatorcontrib>Fancsovits, Peter</creatorcontrib><creatorcontrib>Fawzy, Mohamed</creatorcontrib><creatorcontrib>Fischer, Lukas</creatorcontrib><creatorcontrib>Findikli, Necati</creatorcontrib><creatorcontrib>Kovacic, Borut</creatorcontrib><creatorcontrib>Ljiljak, Dejan</creatorcontrib><creatorcontrib>Rodero, Iris Martinez</creatorcontrib><creatorcontrib>Parmegiani, Lodovico</creatorcontrib><creatorcontrib>Shebl, Omar</creatorcontrib><creatorcontrib>Min, Xie</creatorcontrib><creatorcontrib>Ebner, Thomas</creatorcontrib><title>A human blastocyst dataset including clinical annotations to benchmark deep learning architectures for in vitro fertilization</title><description>The dataset contains static morphology images of human blastocyts on day 5 post insemination, additional annotations, an example prediction of an XCeption model trained on the silver-standard data and a script to evaluate automated predictions. Additional annotations include the expert-annotated scores of the morphological grading system according to Gardner (cell expanstion, quality of inner cell mass and trophectoderm), used to rate blastocyst quality by assessing these morphological parameters as basis for the selection of blastocysts for transfer, and clinical outcomes such as fetal heart beat or healthy live birth. To allow researchers to benchmark novel machine learning-based algorithms trained to predict the Gardner scores, each image is assigned to one of two splits: a training- or a test set split. The training split was annotated by an experienced embryologist with long-time experience on how to apply the Gardner criteria to static morphology blastocyst images. The test set split contains annotations of the three Gardner criteria based on the agreement of an international consortium of experienced clinical embryologists. In summary, the dataset contains blastocyst images, a python script to evaluate model predictions, and four CSV-files including: i. the assignment of images to a training set including silver-standard annotations of all three Gardner criteria, ii.the assignment of images to the Gardner criteria test set including gold-standard annotations of all three Gardner criteria, iii. the assignment of images to the clinical dataset and thus, the images of blastocysts that had been transferred including their clinical annotations and iv. an example prediction by an XCeption-based trained deep learning model.</description><subject>Artificial intelligence not elsewhere classified</subject><subject>Reproductive medicine not elsewhere classified</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><creationdate>2023</creationdate><recordtype>image</recordtype><sourceid>PQ8</sourceid><recordid>eNqdj0FOw0AMRWfTBaK9AQtfoCFpUtQuEaLiAOxH7sRpLCaeyuMgtRJ3J0H0Al39zf9P_zn3VJXFS7lrnod90fEp96hUbMpqU1fb-sH9vEI_DihwjJgthUs2aNEwkwFLiGPLcoIQWThgBBRJhsZJMliCI0noB9QvaInOEAlV5j5q6Nko2KiUoUs6seCbTRN0pMaRr3-QpVt0GDOt_vPRNYf3z7eP9XwhTAR_Vp74F1-Vfrbww97fLPzNor5z9gsVUl6U</recordid><startdate>20230221</startdate><enddate>20230221</enddate><creator>Kromp, Florian</creator><creator>Wagner, Raphael</creator><creator>Balaban, Basak</creator><creator>Cottin, Veronique</creator><creator>Saiz, Irene Cuevas</creator><creator>Dacho, Clara</creator><creator>Fancsovits, Peter</creator><creator>Fawzy, Mohamed</creator><creator>Fischer, Lukas</creator><creator>Findikli, Necati</creator><creator>Kovacic, Borut</creator><creator>Ljiljak, Dejan</creator><creator>Rodero, Iris Martinez</creator><creator>Parmegiani, Lodovico</creator><creator>Shebl, Omar</creator><creator>Min, Xie</creator><creator>Ebner, Thomas</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-2450-6749</orcidid><orcidid>https://orcid.org/0000-0001-5303-6638</orcidid><orcidid>https://orcid.org/0000-0001-7057-2045</orcidid><orcidid>https://orcid.org/0000-0003-1717-1490</orcidid><orcidid>https://orcid.org/0000-0002-9587-0492</orcidid></search><sort><creationdate>20230221</creationdate><title>A human blastocyst dataset including clinical annotations to benchmark deep learning architectures for in vitro fertilization</title><author>Kromp, Florian ; Wagner, Raphael ; Balaban, Basak ; Cottin, Veronique ; Saiz, Irene Cuevas ; Dacho, Clara ; Fancsovits, Peter ; Fawzy, Mohamed ; Fischer, Lukas ; Findikli, Necati ; Kovacic, Borut ; Ljiljak, Dejan ; Rodero, Iris Martinez ; Parmegiani, Lodovico ; Shebl, Omar ; Min, Xie ; Ebner, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_201231533</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence not elsewhere classified</topic><topic>Reproductive medicine not elsewhere classified</topic><toplevel>online_resources</toplevel><creatorcontrib>Kromp, Florian</creatorcontrib><creatorcontrib>Wagner, Raphael</creatorcontrib><creatorcontrib>Balaban, Basak</creatorcontrib><creatorcontrib>Cottin, Veronique</creatorcontrib><creatorcontrib>Saiz, Irene Cuevas</creatorcontrib><creatorcontrib>Dacho, Clara</creatorcontrib><creatorcontrib>Fancsovits, Peter</creatorcontrib><creatorcontrib>Fawzy, Mohamed</creatorcontrib><creatorcontrib>Fischer, Lukas</creatorcontrib><creatorcontrib>Findikli, Necati</creatorcontrib><creatorcontrib>Kovacic, Borut</creatorcontrib><creatorcontrib>Ljiljak, Dejan</creatorcontrib><creatorcontrib>Rodero, Iris Martinez</creatorcontrib><creatorcontrib>Parmegiani, Lodovico</creatorcontrib><creatorcontrib>Shebl, Omar</creatorcontrib><creatorcontrib>Min, Xie</creatorcontrib><creatorcontrib>Ebner, Thomas</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kromp, Florian</au><au>Wagner, Raphael</au><au>Balaban, Basak</au><au>Cottin, Veronique</au><au>Saiz, Irene Cuevas</au><au>Dacho, Clara</au><au>Fancsovits, Peter</au><au>Fawzy, Mohamed</au><au>Fischer, Lukas</au><au>Findikli, Necati</au><au>Kovacic, Borut</au><au>Ljiljak, Dejan</au><au>Rodero, Iris Martinez</au><au>Parmegiani, Lodovico</au><au>Shebl, Omar</au><au>Min, Xie</au><au>Ebner, Thomas</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>A human blastocyst dataset including clinical annotations to benchmark deep learning architectures for in vitro fertilization</title><date>2023-02-21</date><risdate>2023</risdate><abstract>The dataset contains static morphology images of human blastocyts on day 5 post insemination, additional annotations, an example prediction of an XCeption model trained on the silver-standard data and a script to evaluate automated predictions. Additional annotations include the expert-annotated scores of the morphological grading system according to Gardner (cell expanstion, quality of inner cell mass and trophectoderm), used to rate blastocyst quality by assessing these morphological parameters as basis for the selection of blastocysts for transfer, and clinical outcomes such as fetal heart beat or healthy live birth. To allow researchers to benchmark novel machine learning-based algorithms trained to predict the Gardner scores, each image is assigned to one of two splits: a training- or a test set split. The training split was annotated by an experienced embryologist with long-time experience on how to apply the Gardner criteria to static morphology blastocyst images. The test set split contains annotations of the three Gardner criteria based on the agreement of an international consortium of experienced clinical embryologists. In summary, the dataset contains blastocyst images, a python script to evaluate model predictions, and four CSV-files including: i. the assignment of images to a training set including silver-standard annotations of all three Gardner criteria, ii.the assignment of images to the Gardner criteria test set including gold-standard annotations of all three Gardner criteria, iii. the assignment of images to the clinical dataset and thus, the images of blastocysts that had been transferred including their clinical annotations and iv. an example prediction by an XCeption-based trained deep learning model.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.20123153</doi><orcidid>https://orcid.org/0000-0002-2450-6749</orcidid><orcidid>https://orcid.org/0000-0001-5303-6638</orcidid><orcidid>https://orcid.org/0000-0001-7057-2045</orcidid><orcidid>https://orcid.org/0000-0003-1717-1490</orcidid><orcidid>https://orcid.org/0000-0002-9587-0492</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.20123153
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_20123153
source DataCite
subjects Artificial intelligence not elsewhere classified
Reproductive medicine not elsewhere classified
title A human blastocyst dataset including clinical annotations to benchmark deep learning architectures for in vitro fertilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Kromp,%20Florian&rft.date=2023-02-21&rft_id=info:doi/10.6084/m9.figshare.20123153&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_20123153%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true