Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks

Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Martins, Bianca Cerqueira, Leal, Glória da Silva Almeida, Binoti, Daniel Henrique Breda, Santos, Glaycianne Christine Vieira dos, Silva, Carlos Eduardo Silveira da, Latorraca, João Vicente de Figueiredo
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Martins, Bianca Cerqueira
Leal, Glória da Silva Almeida
Binoti, Daniel Henrique Breda
Santos, Glaycianne Christine Vieira dos
Silva, Carlos Eduardo Silveira da
Latorraca, João Vicente de Figueiredo
description Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level (h100%). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.
doi_str_mv 10.6084/m9.figshare.19996799
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_19996799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_19996799</sourcerecordid><originalsourceid>FETCH-LOGICAL-d919-45cf7e1f2a8e8623a8f73ef9b331ae6d3dfc4aa59e0e871934b9ba78bf3db9a73</originalsourceid><addsrcrecordid>eNo1z7tugzAUgGEvHaq0b9DBYztAcUywzxih9CJF6cJuHcMxWIWAbKdV3r7XTP_2Sx9jd6LIq0KXjxPkzvdxwEC5AIBKAVyzZheTnzD5-cgH8v2Q-EgfNPLZ8Xpe0DsKyOOS8_s99afJH-eI9MDtmW9D8s63Hkd-oFP4Tfqcw3u8YVcOx0i3_12x5mnX1C_Z_u35td7usw4EZOWmdYqEW6MmXa0laqckObBSCqSqk51rS8QNUEFaCZClBYtKWyc7C6jkipV_2w4Ttj6RWcK3JZyNKMyP2UxgLmZzMcsvwphUew</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks</title><source>DataCite</source><creator>Martins, Bianca Cerqueira ; Leal, Glória da Silva Almeida ; Binoti, Daniel Henrique Breda ; Santos, Glaycianne Christine Vieira dos ; Silva, Carlos Eduardo Silveira da ; Latorraca, João Vicente de Figueiredo</creator><creatorcontrib>Martins, Bianca Cerqueira ; Leal, Glória da Silva Almeida ; Binoti, Daniel Henrique Breda ; Santos, Glaycianne Christine Vieira dos ; Silva, Carlos Eduardo Silveira da ; Latorraca, João Vicente de Figueiredo</creatorcontrib><description>Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level (h100%). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.</description><identifier>DOI: 10.6084/m9.figshare.19996799</identifier><language>eng</language><publisher>SciELO journals</publisher><subject>FOS: Biological sciences ; Plant Biology</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.19996799$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Martins, Bianca Cerqueira</creatorcontrib><creatorcontrib>Leal, Glória da Silva Almeida</creatorcontrib><creatorcontrib>Binoti, Daniel Henrique Breda</creatorcontrib><creatorcontrib>Santos, Glaycianne Christine Vieira dos</creatorcontrib><creatorcontrib>Silva, Carlos Eduardo Silveira da</creatorcontrib><creatorcontrib>Latorraca, João Vicente de Figueiredo</creatorcontrib><title>Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks</title><description>Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level (h100%). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.</description><subject>FOS: Biological sciences</subject><subject>Plant Biology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1z7tugzAUgGEvHaq0b9DBYztAcUywzxih9CJF6cJuHcMxWIWAbKdV3r7XTP_2Sx9jd6LIq0KXjxPkzvdxwEC5AIBKAVyzZheTnzD5-cgH8v2Q-EgfNPLZ8Xpe0DsKyOOS8_s99afJH-eI9MDtmW9D8s63Hkd-oFP4Tfqcw3u8YVcOx0i3_12x5mnX1C_Z_u35td7usw4EZOWmdYqEW6MmXa0laqckObBSCqSqk51rS8QNUEFaCZClBYtKWyc7C6jkipV_2w4Ttj6RWcK3JZyNKMyP2UxgLmZzMcsvwphUew</recordid><startdate>20220604</startdate><enddate>20220604</enddate><creator>Martins, Bianca Cerqueira</creator><creator>Leal, Glória da Silva Almeida</creator><creator>Binoti, Daniel Henrique Breda</creator><creator>Santos, Glaycianne Christine Vieira dos</creator><creator>Silva, Carlos Eduardo Silveira da</creator><creator>Latorraca, João Vicente de Figueiredo</creator><general>SciELO journals</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220604</creationdate><title>Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks</title><author>Martins, Bianca Cerqueira ; Leal, Glória da Silva Almeida ; Binoti, Daniel Henrique Breda ; Santos, Glaycianne Christine Vieira dos ; Silva, Carlos Eduardo Silveira da ; Latorraca, João Vicente de Figueiredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d919-45cf7e1f2a8e8623a8f73ef9b331ae6d3dfc4aa59e0e871934b9ba78bf3db9a73</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>FOS: Biological sciences</topic><topic>Plant Biology</topic><toplevel>online_resources</toplevel><creatorcontrib>Martins, Bianca Cerqueira</creatorcontrib><creatorcontrib>Leal, Glória da Silva Almeida</creatorcontrib><creatorcontrib>Binoti, Daniel Henrique Breda</creatorcontrib><creatorcontrib>Santos, Glaycianne Christine Vieira dos</creatorcontrib><creatorcontrib>Silva, Carlos Eduardo Silveira da</creatorcontrib><creatorcontrib>Latorraca, João Vicente de Figueiredo</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martins, Bianca Cerqueira</au><au>Leal, Glória da Silva Almeida</au><au>Binoti, Daniel Henrique Breda</au><au>Santos, Glaycianne Christine Vieira dos</au><au>Silva, Carlos Eduardo Silveira da</au><au>Latorraca, João Vicente de Figueiredo</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks</title><date>2022-06-04</date><risdate>2022</risdate><abstract>Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level (h100%). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.</abstract><pub>SciELO journals</pub><doi>10.6084/m9.figshare.19996799</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.19996799
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_19996799
source DataCite
subjects FOS: Biological sciences
Plant Biology
title Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Martins,%20Bianca%20Cerqueira&rft.date=2022-06-04&rft_id=info:doi/10.6084/m9.figshare.19996799&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_19996799%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true