Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks
Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Martins, Bianca Cerqueira Leal, Glória da Silva Almeida Binoti, Daniel Henrique Breda Santos, Glaycianne Christine Vieira dos Silva, Carlos Eduardo Silveira da Latorraca, João Vicente de Figueiredo |
description | Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level (h100%). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin. |
doi_str_mv | 10.6084/m9.figshare.19996799 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_19996799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_19996799</sourcerecordid><originalsourceid>FETCH-LOGICAL-d919-45cf7e1f2a8e8623a8f73ef9b331ae6d3dfc4aa59e0e871934b9ba78bf3db9a73</originalsourceid><addsrcrecordid>eNo1z7tugzAUgGEvHaq0b9DBYztAcUywzxih9CJF6cJuHcMxWIWAbKdV3r7XTP_2Sx9jd6LIq0KXjxPkzvdxwEC5AIBKAVyzZheTnzD5-cgH8v2Q-EgfNPLZ8Xpe0DsKyOOS8_s99afJH-eI9MDtmW9D8s63Hkd-oFP4Tfqcw3u8YVcOx0i3_12x5mnX1C_Z_u35td7usw4EZOWmdYqEW6MmXa0laqckObBSCqSqk51rS8QNUEFaCZClBYtKWyc7C6jkipV_2w4Ttj6RWcK3JZyNKMyP2UxgLmZzMcsvwphUew</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks</title><source>DataCite</source><creator>Martins, Bianca Cerqueira ; Leal, Glória da Silva Almeida ; Binoti, Daniel Henrique Breda ; Santos, Glaycianne Christine Vieira dos ; Silva, Carlos Eduardo Silveira da ; Latorraca, João Vicente de Figueiredo</creator><creatorcontrib>Martins, Bianca Cerqueira ; Leal, Glória da Silva Almeida ; Binoti, Daniel Henrique Breda ; Santos, Glaycianne Christine Vieira dos ; Silva, Carlos Eduardo Silveira da ; Latorraca, João Vicente de Figueiredo</creatorcontrib><description>Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level (h100%). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.</description><identifier>DOI: 10.6084/m9.figshare.19996799</identifier><language>eng</language><publisher>SciELO journals</publisher><subject>FOS: Biological sciences ; Plant Biology</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.19996799$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Martins, Bianca Cerqueira</creatorcontrib><creatorcontrib>Leal, Glória da Silva Almeida</creatorcontrib><creatorcontrib>Binoti, Daniel Henrique Breda</creatorcontrib><creatorcontrib>Santos, Glaycianne Christine Vieira dos</creatorcontrib><creatorcontrib>Silva, Carlos Eduardo Silveira da</creatorcontrib><creatorcontrib>Latorraca, João Vicente de Figueiredo</creatorcontrib><title>Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks</title><description>Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level (h100%). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.</description><subject>FOS: Biological sciences</subject><subject>Plant Biology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1z7tugzAUgGEvHaq0b9DBYztAcUywzxih9CJF6cJuHcMxWIWAbKdV3r7XTP_2Sx9jd6LIq0KXjxPkzvdxwEC5AIBKAVyzZheTnzD5-cgH8v2Q-EgfNPLZ8Xpe0DsKyOOS8_s99afJH-eI9MDtmW9D8s63Hkd-oFP4Tfqcw3u8YVcOx0i3_12x5mnX1C_Z_u35td7usw4EZOWmdYqEW6MmXa0laqckObBSCqSqk51rS8QNUEFaCZClBYtKWyc7C6jkipV_2w4Ttj6RWcK3JZyNKMyP2UxgLmZzMcsvwphUew</recordid><startdate>20220604</startdate><enddate>20220604</enddate><creator>Martins, Bianca Cerqueira</creator><creator>Leal, Glória da Silva Almeida</creator><creator>Binoti, Daniel Henrique Breda</creator><creator>Santos, Glaycianne Christine Vieira dos</creator><creator>Silva, Carlos Eduardo Silveira da</creator><creator>Latorraca, João Vicente de Figueiredo</creator><general>SciELO journals</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220604</creationdate><title>Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks</title><author>Martins, Bianca Cerqueira ; Leal, Glória da Silva Almeida ; Binoti, Daniel Henrique Breda ; Santos, Glaycianne Christine Vieira dos ; Silva, Carlos Eduardo Silveira da ; Latorraca, João Vicente de Figueiredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d919-45cf7e1f2a8e8623a8f73ef9b331ae6d3dfc4aa59e0e871934b9ba78bf3db9a73</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>FOS: Biological sciences</topic><topic>Plant Biology</topic><toplevel>online_resources</toplevel><creatorcontrib>Martins, Bianca Cerqueira</creatorcontrib><creatorcontrib>Leal, Glória da Silva Almeida</creatorcontrib><creatorcontrib>Binoti, Daniel Henrique Breda</creatorcontrib><creatorcontrib>Santos, Glaycianne Christine Vieira dos</creatorcontrib><creatorcontrib>Silva, Carlos Eduardo Silveira da</creatorcontrib><creatorcontrib>Latorraca, João Vicente de Figueiredo</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martins, Bianca Cerqueira</au><au>Leal, Glória da Silva Almeida</au><au>Binoti, Daniel Henrique Breda</au><au>Santos, Glaycianne Christine Vieira dos</au><au>Silva, Carlos Eduardo Silveira da</au><au>Latorraca, João Vicente de Figueiredo</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks</title><date>2022-06-04</date><risdate>2022</risdate><abstract>Abstract The knowledge of tree attributes of the genus Copaifera sp. (copaiba), such as the height of the trunks, helps to estimate the productive potential of oleoresin and to propose more suitable ways of handling, aiming at optimizing production. This research aimed to test hypsometric equations and deterministic methods of Artificial Neural Networks (ANN) to estimate the total heights levels of the trunks of 31 copaiba trees of the Western Brazilian Amazon, at unknown ages. However, the ANN correlation coefficients obtained were greater than 0,99, demonstrating that they are appropriate for the estimation of height level (h100%). Among the ANN architectures, ANN 3 with 2 neurons in the hidden layer stood out. The application of ANN to estimate the total height of the trunk of Copaifera sp. native trees is a viable tool that can contribute to optimize modeling of the different important aspects to determine the productive potential of oleoresin.</abstract><pub>SciELO journals</pub><doi>10.6084/m9.figshare.19996799</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.19996799 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_19996799 |
source | DataCite |
subjects | FOS: Biological sciences Plant Biology |
title | Estimation height level of Copaifera sp. (Leguminosae) by Artificial Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Martins,%20Bianca%20Cerqueira&rft.date=2022-06-04&rft_id=info:doi/10.6084/m9.figshare.19996799&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_19996799%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |