Database (single file)
The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Losing, Viktor Hasenjäger, Martina |
description | The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body Lycra suit with 17 IMU sensors, insoles with eight pressure sensing cells per foot, and a mobile eye tracker. They completed three different walk courses, where each trial consisted of several minutes of walking, including a variety of common elements such as ramps, stairs, and pavements. The data is annotated in detail to enable machine-learning-based analysis and prediction. |
doi_str_mv | 10.6084/m9.figshare.19834324 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_19834324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_19834324</sourcerecordid><originalsourceid>FETCH-LOGICAL-d914-9be110b87a96362b5deb701ac95c8a4fd0d70ac684b16ac6f5d1f14abe46ad733</originalsourceid><addsrcrecordid>eNo1zj1vwjAQgGEvDBWwdmJghCGpL7449liFfiAhsWS3zvE5WEpQlbDw7wFRpnd79QixAplrafBjsHlM3XSikXOwRqEq8E287-hCniZeb6Z07npex9TzdiFmkfqJl_-di-b7q6l_s8PxZ19_HrJgATPrGUB6U5HVShe-DOwrCdTasjWEMchQSWq1QQ_63lgGiIDkGTWFSqm5wOc23BVturD7G9NA49WBdA-1G6x7qd1LrW5-1Ty4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Database (single file)</title><source>DataCite</source><creator>Losing, Viktor ; Hasenjäger, Martina</creator><creatorcontrib>Losing, Viktor ; Hasenjäger, Martina</creatorcontrib><description>The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body Lycra suit with 17 IMU sensors, insoles with eight pressure sensing cells per foot, and a mobile eye tracker. They completed three different walk courses, where each trial consisted of several minutes of walking, including a variety of common elements such as ramps, stairs, and pavements. The data is annotated in detail to enable machine-learning-based analysis and prediction.</description><identifier>DOI: 10.6084/m9.figshare.19834324</identifier><language>eng</language><publisher>figshare</publisher><subject>FOS: Clinical medicine ; Neuroscience ; Vision Science</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.19834324$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Losing, Viktor</creatorcontrib><creatorcontrib>Hasenjäger, Martina</creatorcontrib><title>Database (single file)</title><description>The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body Lycra suit with 17 IMU sensors, insoles with eight pressure sensing cells per foot, and a mobile eye tracker. They completed three different walk courses, where each trial consisted of several minutes of walking, including a variety of common elements such as ramps, stairs, and pavements. The data is annotated in detail to enable machine-learning-based analysis and prediction.</description><subject>FOS: Clinical medicine</subject><subject>Neuroscience</subject><subject>Vision Science</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1zj1vwjAQgGEvDBWwdmJghCGpL7449liFfiAhsWS3zvE5WEpQlbDw7wFRpnd79QixAplrafBjsHlM3XSikXOwRqEq8E287-hCniZeb6Z07npex9TzdiFmkfqJl_-di-b7q6l_s8PxZ19_HrJgATPrGUB6U5HVShe-DOwrCdTasjWEMchQSWq1QQ_63lgGiIDkGTWFSqm5wOc23BVturD7G9NA49WBdA-1G6x7qd1LrW5-1Ty4</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Losing, Viktor</creator><creator>Hasenjäger, Martina</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220728</creationdate><title>Database (single file)</title><author>Losing, Viktor ; Hasenjäger, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d914-9be110b87a96362b5deb701ac95c8a4fd0d70ac684b16ac6f5d1f14abe46ad733</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>FOS: Clinical medicine</topic><topic>Neuroscience</topic><topic>Vision Science</topic><toplevel>online_resources</toplevel><creatorcontrib>Losing, Viktor</creatorcontrib><creatorcontrib>Hasenjäger, Martina</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Losing, Viktor</au><au>Hasenjäger, Martina</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Database (single file)</title><date>2022-07-28</date><risdate>2022</risdate><abstract>The database presented here provides recordings of everyday walk scenarios in a natural urban environment, including synchronized IMU-, FSR-, and gaze data. Twenty healthy participants (five females, fifteen males, between 18 and 69 years old, 178.5 $\pm$ 7.64 cm, 72.9 $\pm$ 8.7 kg) wore a full-body Lycra suit with 17 IMU sensors, insoles with eight pressure sensing cells per foot, and a mobile eye tracker. They completed three different walk courses, where each trial consisted of several minutes of walking, including a variety of common elements such as ramps, stairs, and pavements. The data is annotated in detail to enable machine-learning-based analysis and prediction.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.19834324</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.19834324 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_19834324 |
source | DataCite |
subjects | FOS: Clinical medicine Neuroscience Vision Science |
title | Database (single file) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Losing,%20Viktor&rft.date=2022-07-28&rft_id=info:doi/10.6084/m9.figshare.19834324&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_19834324%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |