Mitochondrial respiration supports autophagy to provide stress resistance during quiescence

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Magalhaes-Novais, Silvia, Blecha, Jan, Naraine, Ravindra, Mikesova, Jana, Abaffy, Pavel, Pecinova, Alena, Milosevic, Mirko, Bohuslavova, Romana, Prochazka, Jan, Khan, Shawez, Novotna, Eliska, Sindelka, Radek, Machan, Radek, Dewerchin, Mieke, Vlcak, Erik, Kalucka, Joanna, Hubackova, Sona Stemberkova, Benda, Ales, Goveia, Jermaine, Mracek, Tomas, Barinka, Cyril, Carmeliet, Peter, Neuzil, Jiri, Rohlenova, Katerina, Rohlena, Jakub
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Magalhaes-Novais, Silvia
Blecha, Jan
Naraine, Ravindra
Mikesova, Jana
Abaffy, Pavel
Pecinova, Alena
Milosevic, Mirko
Bohuslavova, Romana
Prochazka, Jan
Khan, Shawez
Novotna, Eliska
Sindelka, Radek
Machan, Radek
Dewerchin, Mieke
Vlcak, Erik
Kalucka, Joanna
Hubackova, Sona Stemberkova
Benda, Ales
Goveia, Jermaine
Mracek, Tomas
Barinka, Cyril
Carmeliet, Peter
Neuzil, Jiri
Rohlenova, Katerina
Rohlena, Jakub
description Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.
doi_str_mv 10.6084/m9.figshare.19323823
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_19323823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_19323823</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_193238233</originalsourceid><addsrcrecordid>eNqdjjEOgkAQRbexMOoNLPYCIggxUBuNjZ2dxWYCC0wC7Doza8LthUQuYPWTl_-Sp9Q-iaNznGfHvohqbLgFslFSpKc0P6Vr9XqguLJ1Q0UInSbLHgkE3aA5eO9IWEMQ51toRi1Oe3IfrKxmmb48C8gCQ2l1FQiHRr8DWi7tRLZqVUPHdvfbjcpu1-flfqhAoESxxhP2QKNJYjM3mr4wS6NZGtM_tS_hH1Kg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Mitochondrial respiration supports autophagy to provide stress resistance during quiescence</title><source>DataCite</source><creator>Magalhaes-Novais, Silvia ; Blecha, Jan ; Naraine, Ravindra ; Mikesova, Jana ; Abaffy, Pavel ; Pecinova, Alena ; Milosevic, Mirko ; Bohuslavova, Romana ; Prochazka, Jan ; Khan, Shawez ; Novotna, Eliska ; Sindelka, Radek ; Machan, Radek ; Dewerchin, Mieke ; Vlcak, Erik ; Kalucka, Joanna ; Hubackova, Sona Stemberkova ; Benda, Ales ; Goveia, Jermaine ; Mracek, Tomas ; Barinka, Cyril ; Carmeliet, Peter ; Neuzil, Jiri ; Rohlenova, Katerina ; Rohlena, Jakub</creator><creatorcontrib>Magalhaes-Novais, Silvia ; Blecha, Jan ; Naraine, Ravindra ; Mikesova, Jana ; Abaffy, Pavel ; Pecinova, Alena ; Milosevic, Mirko ; Bohuslavova, Romana ; Prochazka, Jan ; Khan, Shawez ; Novotna, Eliska ; Sindelka, Radek ; Machan, Radek ; Dewerchin, Mieke ; Vlcak, Erik ; Kalucka, Joanna ; Hubackova, Sona Stemberkova ; Benda, Ales ; Goveia, Jermaine ; Mracek, Tomas ; Barinka, Cyril ; Carmeliet, Peter ; Neuzil, Jiri ; Rohlenova, Katerina ; Rohlena, Jakub</creatorcontrib><description>Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.</description><identifier>DOI: 10.6084/m9.figshare.19323823</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Biochemistry ; Biophysics ; Cell Biology ; Computational Biology ; Evolutionary Biology ; FOS: Biological sciences ; FOS: Clinical medicine ; FOS: Health sciences ; Genetics ; Immunology ; Infectious Diseases ; Medicine ; Molecular Biology ; Physiology</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,1895</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.19323823$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Magalhaes-Novais, Silvia</creatorcontrib><creatorcontrib>Blecha, Jan</creatorcontrib><creatorcontrib>Naraine, Ravindra</creatorcontrib><creatorcontrib>Mikesova, Jana</creatorcontrib><creatorcontrib>Abaffy, Pavel</creatorcontrib><creatorcontrib>Pecinova, Alena</creatorcontrib><creatorcontrib>Milosevic, Mirko</creatorcontrib><creatorcontrib>Bohuslavova, Romana</creatorcontrib><creatorcontrib>Prochazka, Jan</creatorcontrib><creatorcontrib>Khan, Shawez</creatorcontrib><creatorcontrib>Novotna, Eliska</creatorcontrib><creatorcontrib>Sindelka, Radek</creatorcontrib><creatorcontrib>Machan, Radek</creatorcontrib><creatorcontrib>Dewerchin, Mieke</creatorcontrib><creatorcontrib>Vlcak, Erik</creatorcontrib><creatorcontrib>Kalucka, Joanna</creatorcontrib><creatorcontrib>Hubackova, Sona Stemberkova</creatorcontrib><creatorcontrib>Benda, Ales</creatorcontrib><creatorcontrib>Goveia, Jermaine</creatorcontrib><creatorcontrib>Mracek, Tomas</creatorcontrib><creatorcontrib>Barinka, Cyril</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Neuzil, Jiri</creatorcontrib><creatorcontrib>Rohlenova, Katerina</creatorcontrib><creatorcontrib>Rohlena, Jakub</creatorcontrib><title>Mitochondrial respiration supports autophagy to provide stress resistance during quiescence</title><description>Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.</description><subject>Biochemistry</subject><subject>Biophysics</subject><subject>Cell Biology</subject><subject>Computational Biology</subject><subject>Evolutionary Biology</subject><subject>FOS: Biological sciences</subject><subject>FOS: Clinical medicine</subject><subject>FOS: Health sciences</subject><subject>Genetics</subject><subject>Immunology</subject><subject>Infectious Diseases</subject><subject>Medicine</subject><subject>Molecular Biology</subject><subject>Physiology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqdjjEOgkAQRbexMOoNLPYCIggxUBuNjZ2dxWYCC0wC7Doza8LthUQuYPWTl_-Sp9Q-iaNznGfHvohqbLgFslFSpKc0P6Vr9XqguLJ1Q0UInSbLHgkE3aA5eO9IWEMQ51toRi1Oe3IfrKxmmb48C8gCQ2l1FQiHRr8DWi7tRLZqVUPHdvfbjcpu1-flfqhAoESxxhP2QKNJYjM3mr4wS6NZGtM_tS_hH1Kg</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Magalhaes-Novais, Silvia</creator><creator>Blecha, Jan</creator><creator>Naraine, Ravindra</creator><creator>Mikesova, Jana</creator><creator>Abaffy, Pavel</creator><creator>Pecinova, Alena</creator><creator>Milosevic, Mirko</creator><creator>Bohuslavova, Romana</creator><creator>Prochazka, Jan</creator><creator>Khan, Shawez</creator><creator>Novotna, Eliska</creator><creator>Sindelka, Radek</creator><creator>Machan, Radek</creator><creator>Dewerchin, Mieke</creator><creator>Vlcak, Erik</creator><creator>Kalucka, Joanna</creator><creator>Hubackova, Sona Stemberkova</creator><creator>Benda, Ales</creator><creator>Goveia, Jermaine</creator><creator>Mracek, Tomas</creator><creator>Barinka, Cyril</creator><creator>Carmeliet, Peter</creator><creator>Neuzil, Jiri</creator><creator>Rohlenova, Katerina</creator><creator>Rohlena, Jakub</creator><general>Taylor &amp; Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220308</creationdate><title>Mitochondrial respiration supports autophagy to provide stress resistance during quiescence</title><author>Magalhaes-Novais, Silvia ; Blecha, Jan ; Naraine, Ravindra ; Mikesova, Jana ; Abaffy, Pavel ; Pecinova, Alena ; Milosevic, Mirko ; Bohuslavova, Romana ; Prochazka, Jan ; Khan, Shawez ; Novotna, Eliska ; Sindelka, Radek ; Machan, Radek ; Dewerchin, Mieke ; Vlcak, Erik ; Kalucka, Joanna ; Hubackova, Sona Stemberkova ; Benda, Ales ; Goveia, Jermaine ; Mracek, Tomas ; Barinka, Cyril ; Carmeliet, Peter ; Neuzil, Jiri ; Rohlenova, Katerina ; Rohlena, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_193238233</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry</topic><topic>Biophysics</topic><topic>Cell Biology</topic><topic>Computational Biology</topic><topic>Evolutionary Biology</topic><topic>FOS: Biological sciences</topic><topic>FOS: Clinical medicine</topic><topic>FOS: Health sciences</topic><topic>Genetics</topic><topic>Immunology</topic><topic>Infectious Diseases</topic><topic>Medicine</topic><topic>Molecular Biology</topic><topic>Physiology</topic><toplevel>online_resources</toplevel><creatorcontrib>Magalhaes-Novais, Silvia</creatorcontrib><creatorcontrib>Blecha, Jan</creatorcontrib><creatorcontrib>Naraine, Ravindra</creatorcontrib><creatorcontrib>Mikesova, Jana</creatorcontrib><creatorcontrib>Abaffy, Pavel</creatorcontrib><creatorcontrib>Pecinova, Alena</creatorcontrib><creatorcontrib>Milosevic, Mirko</creatorcontrib><creatorcontrib>Bohuslavova, Romana</creatorcontrib><creatorcontrib>Prochazka, Jan</creatorcontrib><creatorcontrib>Khan, Shawez</creatorcontrib><creatorcontrib>Novotna, Eliska</creatorcontrib><creatorcontrib>Sindelka, Radek</creatorcontrib><creatorcontrib>Machan, Radek</creatorcontrib><creatorcontrib>Dewerchin, Mieke</creatorcontrib><creatorcontrib>Vlcak, Erik</creatorcontrib><creatorcontrib>Kalucka, Joanna</creatorcontrib><creatorcontrib>Hubackova, Sona Stemberkova</creatorcontrib><creatorcontrib>Benda, Ales</creatorcontrib><creatorcontrib>Goveia, Jermaine</creatorcontrib><creatorcontrib>Mracek, Tomas</creatorcontrib><creatorcontrib>Barinka, Cyril</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Neuzil, Jiri</creatorcontrib><creatorcontrib>Rohlenova, Katerina</creatorcontrib><creatorcontrib>Rohlena, Jakub</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Magalhaes-Novais, Silvia</au><au>Blecha, Jan</au><au>Naraine, Ravindra</au><au>Mikesova, Jana</au><au>Abaffy, Pavel</au><au>Pecinova, Alena</au><au>Milosevic, Mirko</au><au>Bohuslavova, Romana</au><au>Prochazka, Jan</au><au>Khan, Shawez</au><au>Novotna, Eliska</au><au>Sindelka, Radek</au><au>Machan, Radek</au><au>Dewerchin, Mieke</au><au>Vlcak, Erik</au><au>Kalucka, Joanna</au><au>Hubackova, Sona Stemberkova</au><au>Benda, Ales</au><au>Goveia, Jermaine</au><au>Mracek, Tomas</au><au>Barinka, Cyril</au><au>Carmeliet, Peter</au><au>Neuzil, Jiri</au><au>Rohlenova, Katerina</au><au>Rohlena, Jakub</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Mitochondrial respiration supports autophagy to provide stress resistance during quiescence</title><date>2022-03-08</date><risdate>2022</risdate><abstract>Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.</abstract><pub>Taylor &amp; Francis</pub><doi>10.6084/m9.figshare.19323823</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.19323823
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_19323823
source DataCite
subjects Biochemistry
Biophysics
Cell Biology
Computational Biology
Evolutionary Biology
FOS: Biological sciences
FOS: Clinical medicine
FOS: Health sciences
Genetics
Immunology
Infectious Diseases
Medicine
Molecular Biology
Physiology
title Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Magalhaes-Novais,%20Silvia&rft.date=2022-03-08&rft_id=info:doi/10.6084/m9.figshare.19323823&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_19323823%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true