Mitochondrial respiration supports autophagy to provide stress resistance during quiescence
Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifi...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Magalhaes-Novais, Silvia Blecha, Jan Naraine, Ravindra Mikesova, Jana Abaffy, Pavel Pecinova, Alena Milosevic, Mirko Bohuslavova, Romana Prochazka, Jan Khan, Shawez Novotna, Eliska Sindelka, Radek Machan, Radek Dewerchin, Mieke Vlcak, Erik Kalucka, Joanna Hubackova, Sona Stemberkova Benda, Ales Goveia, Jermaine Mracek, Tomas Barinka, Cyril Carmeliet, Peter Neuzil, Jiri Rohlenova, Katerina Rohlena, Jakub |
description | Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot. |
doi_str_mv | 10.6084/m9.figshare.19323823 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_19323823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_19323823</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_193238233</originalsourceid><addsrcrecordid>eNqdjjEOgkAQRbexMOoNLPYCIggxUBuNjZ2dxWYCC0wC7Doza8LthUQuYPWTl_-Sp9Q-iaNznGfHvohqbLgFslFSpKc0P6Vr9XqguLJ1Q0UInSbLHgkE3aA5eO9IWEMQ51toRi1Oe3IfrKxmmb48C8gCQ2l1FQiHRr8DWi7tRLZqVUPHdvfbjcpu1-flfqhAoESxxhP2QKNJYjM3mr4wS6NZGtM_tS_hH1Kg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Mitochondrial respiration supports autophagy to provide stress resistance during quiescence</title><source>DataCite</source><creator>Magalhaes-Novais, Silvia ; Blecha, Jan ; Naraine, Ravindra ; Mikesova, Jana ; Abaffy, Pavel ; Pecinova, Alena ; Milosevic, Mirko ; Bohuslavova, Romana ; Prochazka, Jan ; Khan, Shawez ; Novotna, Eliska ; Sindelka, Radek ; Machan, Radek ; Dewerchin, Mieke ; Vlcak, Erik ; Kalucka, Joanna ; Hubackova, Sona Stemberkova ; Benda, Ales ; Goveia, Jermaine ; Mracek, Tomas ; Barinka, Cyril ; Carmeliet, Peter ; Neuzil, Jiri ; Rohlenova, Katerina ; Rohlena, Jakub</creator><creatorcontrib>Magalhaes-Novais, Silvia ; Blecha, Jan ; Naraine, Ravindra ; Mikesova, Jana ; Abaffy, Pavel ; Pecinova, Alena ; Milosevic, Mirko ; Bohuslavova, Romana ; Prochazka, Jan ; Khan, Shawez ; Novotna, Eliska ; Sindelka, Radek ; Machan, Radek ; Dewerchin, Mieke ; Vlcak, Erik ; Kalucka, Joanna ; Hubackova, Sona Stemberkova ; Benda, Ales ; Goveia, Jermaine ; Mracek, Tomas ; Barinka, Cyril ; Carmeliet, Peter ; Neuzil, Jiri ; Rohlenova, Katerina ; Rohlena, Jakub</creatorcontrib><description>Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.</description><identifier>DOI: 10.6084/m9.figshare.19323823</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Biochemistry ; Biophysics ; Cell Biology ; Computational Biology ; Evolutionary Biology ; FOS: Biological sciences ; FOS: Clinical medicine ; FOS: Health sciences ; Genetics ; Immunology ; Infectious Diseases ; Medicine ; Molecular Biology ; Physiology</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,1895</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.19323823$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Magalhaes-Novais, Silvia</creatorcontrib><creatorcontrib>Blecha, Jan</creatorcontrib><creatorcontrib>Naraine, Ravindra</creatorcontrib><creatorcontrib>Mikesova, Jana</creatorcontrib><creatorcontrib>Abaffy, Pavel</creatorcontrib><creatorcontrib>Pecinova, Alena</creatorcontrib><creatorcontrib>Milosevic, Mirko</creatorcontrib><creatorcontrib>Bohuslavova, Romana</creatorcontrib><creatorcontrib>Prochazka, Jan</creatorcontrib><creatorcontrib>Khan, Shawez</creatorcontrib><creatorcontrib>Novotna, Eliska</creatorcontrib><creatorcontrib>Sindelka, Radek</creatorcontrib><creatorcontrib>Machan, Radek</creatorcontrib><creatorcontrib>Dewerchin, Mieke</creatorcontrib><creatorcontrib>Vlcak, Erik</creatorcontrib><creatorcontrib>Kalucka, Joanna</creatorcontrib><creatorcontrib>Hubackova, Sona Stemberkova</creatorcontrib><creatorcontrib>Benda, Ales</creatorcontrib><creatorcontrib>Goveia, Jermaine</creatorcontrib><creatorcontrib>Mracek, Tomas</creatorcontrib><creatorcontrib>Barinka, Cyril</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Neuzil, Jiri</creatorcontrib><creatorcontrib>Rohlenova, Katerina</creatorcontrib><creatorcontrib>Rohlena, Jakub</creatorcontrib><title>Mitochondrial respiration supports autophagy to provide stress resistance during quiescence</title><description>Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.</description><subject>Biochemistry</subject><subject>Biophysics</subject><subject>Cell Biology</subject><subject>Computational Biology</subject><subject>Evolutionary Biology</subject><subject>FOS: Biological sciences</subject><subject>FOS: Clinical medicine</subject><subject>FOS: Health sciences</subject><subject>Genetics</subject><subject>Immunology</subject><subject>Infectious Diseases</subject><subject>Medicine</subject><subject>Molecular Biology</subject><subject>Physiology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqdjjEOgkAQRbexMOoNLPYCIggxUBuNjZ2dxWYCC0wC7Doza8LthUQuYPWTl_-Sp9Q-iaNznGfHvohqbLgFslFSpKc0P6Vr9XqguLJ1Q0UInSbLHgkE3aA5eO9IWEMQ51toRi1Oe3IfrKxmmb48C8gCQ2l1FQiHRr8DWi7tRLZqVUPHdvfbjcpu1-flfqhAoESxxhP2QKNJYjM3mr4wS6NZGtM_tS_hH1Kg</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Magalhaes-Novais, Silvia</creator><creator>Blecha, Jan</creator><creator>Naraine, Ravindra</creator><creator>Mikesova, Jana</creator><creator>Abaffy, Pavel</creator><creator>Pecinova, Alena</creator><creator>Milosevic, Mirko</creator><creator>Bohuslavova, Romana</creator><creator>Prochazka, Jan</creator><creator>Khan, Shawez</creator><creator>Novotna, Eliska</creator><creator>Sindelka, Radek</creator><creator>Machan, Radek</creator><creator>Dewerchin, Mieke</creator><creator>Vlcak, Erik</creator><creator>Kalucka, Joanna</creator><creator>Hubackova, Sona Stemberkova</creator><creator>Benda, Ales</creator><creator>Goveia, Jermaine</creator><creator>Mracek, Tomas</creator><creator>Barinka, Cyril</creator><creator>Carmeliet, Peter</creator><creator>Neuzil, Jiri</creator><creator>Rohlenova, Katerina</creator><creator>Rohlena, Jakub</creator><general>Taylor & Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220308</creationdate><title>Mitochondrial respiration supports autophagy to provide stress resistance during quiescence</title><author>Magalhaes-Novais, Silvia ; Blecha, Jan ; Naraine, Ravindra ; Mikesova, Jana ; Abaffy, Pavel ; Pecinova, Alena ; Milosevic, Mirko ; Bohuslavova, Romana ; Prochazka, Jan ; Khan, Shawez ; Novotna, Eliska ; Sindelka, Radek ; Machan, Radek ; Dewerchin, Mieke ; Vlcak, Erik ; Kalucka, Joanna ; Hubackova, Sona Stemberkova ; Benda, Ales ; Goveia, Jermaine ; Mracek, Tomas ; Barinka, Cyril ; Carmeliet, Peter ; Neuzil, Jiri ; Rohlenova, Katerina ; Rohlena, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_193238233</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry</topic><topic>Biophysics</topic><topic>Cell Biology</topic><topic>Computational Biology</topic><topic>Evolutionary Biology</topic><topic>FOS: Biological sciences</topic><topic>FOS: Clinical medicine</topic><topic>FOS: Health sciences</topic><topic>Genetics</topic><topic>Immunology</topic><topic>Infectious Diseases</topic><topic>Medicine</topic><topic>Molecular Biology</topic><topic>Physiology</topic><toplevel>online_resources</toplevel><creatorcontrib>Magalhaes-Novais, Silvia</creatorcontrib><creatorcontrib>Blecha, Jan</creatorcontrib><creatorcontrib>Naraine, Ravindra</creatorcontrib><creatorcontrib>Mikesova, Jana</creatorcontrib><creatorcontrib>Abaffy, Pavel</creatorcontrib><creatorcontrib>Pecinova, Alena</creatorcontrib><creatorcontrib>Milosevic, Mirko</creatorcontrib><creatorcontrib>Bohuslavova, Romana</creatorcontrib><creatorcontrib>Prochazka, Jan</creatorcontrib><creatorcontrib>Khan, Shawez</creatorcontrib><creatorcontrib>Novotna, Eliska</creatorcontrib><creatorcontrib>Sindelka, Radek</creatorcontrib><creatorcontrib>Machan, Radek</creatorcontrib><creatorcontrib>Dewerchin, Mieke</creatorcontrib><creatorcontrib>Vlcak, Erik</creatorcontrib><creatorcontrib>Kalucka, Joanna</creatorcontrib><creatorcontrib>Hubackova, Sona Stemberkova</creatorcontrib><creatorcontrib>Benda, Ales</creatorcontrib><creatorcontrib>Goveia, Jermaine</creatorcontrib><creatorcontrib>Mracek, Tomas</creatorcontrib><creatorcontrib>Barinka, Cyril</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Neuzil, Jiri</creatorcontrib><creatorcontrib>Rohlenova, Katerina</creatorcontrib><creatorcontrib>Rohlena, Jakub</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Magalhaes-Novais, Silvia</au><au>Blecha, Jan</au><au>Naraine, Ravindra</au><au>Mikesova, Jana</au><au>Abaffy, Pavel</au><au>Pecinova, Alena</au><au>Milosevic, Mirko</au><au>Bohuslavova, Romana</au><au>Prochazka, Jan</au><au>Khan, Shawez</au><au>Novotna, Eliska</au><au>Sindelka, Radek</au><au>Machan, Radek</au><au>Dewerchin, Mieke</au><au>Vlcak, Erik</au><au>Kalucka, Joanna</au><au>Hubackova, Sona Stemberkova</au><au>Benda, Ales</au><au>Goveia, Jermaine</au><au>Mracek, Tomas</au><au>Barinka, Cyril</au><au>Carmeliet, Peter</au><au>Neuzil, Jiri</au><au>Rohlenova, Katerina</au><au>Rohlena, Jakub</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Mitochondrial respiration supports autophagy to provide stress resistance during quiescence</title><date>2022-03-08</date><risdate>2022</risdate><abstract>Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.</abstract><pub>Taylor & Francis</pub><doi>10.6084/m9.figshare.19323823</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.19323823 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_19323823 |
source | DataCite |
subjects | Biochemistry Biophysics Cell Biology Computational Biology Evolutionary Biology FOS: Biological sciences FOS: Clinical medicine FOS: Health sciences Genetics Immunology Infectious Diseases Medicine Molecular Biology Physiology |
title | Mitochondrial respiration supports autophagy to provide stress resistance during quiescence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Magalhaes-Novais,%20Silvia&rft.date=2022-03-08&rft_id=info:doi/10.6084/m9.figshare.19323823&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_19323823%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |