Linear Aggregation in Tree-based Estimators
Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Künzel, Sören R. Saarinen, Theo F. Liu, Edward W. Sekhon, Jasjeet S. |
description | Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithm’s favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions. |
doi_str_mv | 10.6084/m9.figshare.18131169 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_18131169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_18131169</sourcerecordid><originalsourceid>FETCH-LOGICAL-d919-bfb9b4146834fe7326b4cce29bcf93ab5833cf5ab01d6c9d40cceb53599c02ce3</originalsourceid><addsrcrecordid>eNo1z71OxDAQBGA3FOjgDSjSnxLs2DHZ8nQ6fqRINOmtXXsdLJEcst3w9hyCq6YYaTSfEA9KdlaO5nGFLqalfGDmTo1KK2XhVuyntDHm5rAsmRes6bw1aWvmzNwSFg7NqdS0Yj3nciduIn4Wvv_PnZifT_PxtZ3eX96Oh6kNoKClSEBGGTtqE_lJ95aM99wD-QgaaRi19nFAkipYD8HIS0uDHgC87D3rnTB_swEr-lTZfeXLg_ztlHS_FLeCu1LclaJ_AF9hRUE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Linear Aggregation in Tree-based Estimators</title><source>DataCite</source><creator>Künzel, Sören R. ; Saarinen, Theo F. ; Liu, Edward W. ; Sekhon, Jasjeet S.</creator><creatorcontrib>Künzel, Sören R. ; Saarinen, Theo F. ; Liu, Edward W. ; Sekhon, Jasjeet S.</creatorcontrib><description>Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithm’s favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions.</description><identifier>DOI: 10.6084/m9.figshare.18131169</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Biotechnology ; Cancer ; Ecology ; FOS: Biological sciences ; FOS: Chemical sciences ; FOS: Computer and information sciences ; FOS: Mathematics ; Information Systems not elsewhere classified ; Inorganic Chemistry ; Mathematical Sciences not elsewhere classified ; Neuroscience ; Pharmacology ; Space Science</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.18131169$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Künzel, Sören R.</creatorcontrib><creatorcontrib>Saarinen, Theo F.</creatorcontrib><creatorcontrib>Liu, Edward W.</creatorcontrib><creatorcontrib>Sekhon, Jasjeet S.</creatorcontrib><title>Linear Aggregation in Tree-based Estimators</title><description>Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithm’s favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions.</description><subject>Biotechnology</subject><subject>Cancer</subject><subject>Ecology</subject><subject>FOS: Biological sciences</subject><subject>FOS: Chemical sciences</subject><subject>FOS: Computer and information sciences</subject><subject>FOS: Mathematics</subject><subject>Information Systems not elsewhere classified</subject><subject>Inorganic Chemistry</subject><subject>Mathematical Sciences not elsewhere classified</subject><subject>Neuroscience</subject><subject>Pharmacology</subject><subject>Space Science</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1z71OxDAQBGA3FOjgDSjSnxLs2DHZ8nQ6fqRINOmtXXsdLJEcst3w9hyCq6YYaTSfEA9KdlaO5nGFLqalfGDmTo1KK2XhVuyntDHm5rAsmRes6bw1aWvmzNwSFg7NqdS0Yj3nciduIn4Wvv_PnZifT_PxtZ3eX96Oh6kNoKClSEBGGTtqE_lJ95aM99wD-QgaaRi19nFAkipYD8HIS0uDHgC87D3rnTB_swEr-lTZfeXLg_ztlHS_FLeCu1LclaJ_AF9hRUE</recordid><startdate>20220110</startdate><enddate>20220110</enddate><creator>Künzel, Sören R.</creator><creator>Saarinen, Theo F.</creator><creator>Liu, Edward W.</creator><creator>Sekhon, Jasjeet S.</creator><general>Taylor & Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220110</creationdate><title>Linear Aggregation in Tree-based Estimators</title><author>Künzel, Sören R. ; Saarinen, Theo F. ; Liu, Edward W. ; Sekhon, Jasjeet S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d919-bfb9b4146834fe7326b4cce29bcf93ab5833cf5ab01d6c9d40cceb53599c02ce3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biotechnology</topic><topic>Cancer</topic><topic>Ecology</topic><topic>FOS: Biological sciences</topic><topic>FOS: Chemical sciences</topic><topic>FOS: Computer and information sciences</topic><topic>FOS: Mathematics</topic><topic>Information Systems not elsewhere classified</topic><topic>Inorganic Chemistry</topic><topic>Mathematical Sciences not elsewhere classified</topic><topic>Neuroscience</topic><topic>Pharmacology</topic><topic>Space Science</topic><toplevel>online_resources</toplevel><creatorcontrib>Künzel, Sören R.</creatorcontrib><creatorcontrib>Saarinen, Theo F.</creatorcontrib><creatorcontrib>Liu, Edward W.</creatorcontrib><creatorcontrib>Sekhon, Jasjeet S.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Künzel, Sören R.</au><au>Saarinen, Theo F.</au><au>Liu, Edward W.</au><au>Sekhon, Jasjeet S.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Linear Aggregation in Tree-based Estimators</title><date>2022-01-10</date><risdate>2022</risdate><abstract>Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithm’s favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions.</abstract><pub>Taylor & Francis</pub><doi>10.6084/m9.figshare.18131169</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.18131169 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_18131169 |
source | DataCite |
subjects | Biotechnology Cancer Ecology FOS: Biological sciences FOS: Chemical sciences FOS: Computer and information sciences FOS: Mathematics Information Systems not elsewhere classified Inorganic Chemistry Mathematical Sciences not elsewhere classified Neuroscience Pharmacology Space Science |
title | Linear Aggregation in Tree-based Estimators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=K%C3%BCnzel,%20S%C3%B6ren%20R.&rft.date=2022-01-10&rft_id=info:doi/10.6084/m9.figshare.18131169&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_18131169%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |