Linear Aggregation in Tree-based Estimators

Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Künzel, Sören R., Saarinen, Theo F., Liu, Edward W., Sekhon, Jasjeet S.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Künzel, Sören R.
Saarinen, Theo F.
Liu, Edward W.
Sekhon, Jasjeet S.
description Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithm’s favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions.
doi_str_mv 10.6084/m9.figshare.18131169
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_18131169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_18131169</sourcerecordid><originalsourceid>FETCH-LOGICAL-d919-bfb9b4146834fe7326b4cce29bcf93ab5833cf5ab01d6c9d40cceb53599c02ce3</originalsourceid><addsrcrecordid>eNo1z71OxDAQBGA3FOjgDSjSnxLs2DHZ8nQ6fqRINOmtXXsdLJEcst3w9hyCq6YYaTSfEA9KdlaO5nGFLqalfGDmTo1KK2XhVuyntDHm5rAsmRes6bw1aWvmzNwSFg7NqdS0Yj3nciduIn4Wvv_PnZifT_PxtZ3eX96Oh6kNoKClSEBGGTtqE_lJ95aM99wD-QgaaRi19nFAkipYD8HIS0uDHgC87D3rnTB_swEr-lTZfeXLg_ztlHS_FLeCu1LclaJ_AF9hRUE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Linear Aggregation in Tree-based Estimators</title><source>DataCite</source><creator>Künzel, Sören R. ; Saarinen, Theo F. ; Liu, Edward W. ; Sekhon, Jasjeet S.</creator><creatorcontrib>Künzel, Sören R. ; Saarinen, Theo F. ; Liu, Edward W. ; Sekhon, Jasjeet S.</creatorcontrib><description>Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithm’s favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions.</description><identifier>DOI: 10.6084/m9.figshare.18131169</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Biotechnology ; Cancer ; Ecology ; FOS: Biological sciences ; FOS: Chemical sciences ; FOS: Computer and information sciences ; FOS: Mathematics ; Information Systems not elsewhere classified ; Inorganic Chemistry ; Mathematical Sciences not elsewhere classified ; Neuroscience ; Pharmacology ; Space Science</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.18131169$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Künzel, Sören R.</creatorcontrib><creatorcontrib>Saarinen, Theo F.</creatorcontrib><creatorcontrib>Liu, Edward W.</creatorcontrib><creatorcontrib>Sekhon, Jasjeet S.</creatorcontrib><title>Linear Aggregation in Tree-based Estimators</title><description>Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithm’s favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions.</description><subject>Biotechnology</subject><subject>Cancer</subject><subject>Ecology</subject><subject>FOS: Biological sciences</subject><subject>FOS: Chemical sciences</subject><subject>FOS: Computer and information sciences</subject><subject>FOS: Mathematics</subject><subject>Information Systems not elsewhere classified</subject><subject>Inorganic Chemistry</subject><subject>Mathematical Sciences not elsewhere classified</subject><subject>Neuroscience</subject><subject>Pharmacology</subject><subject>Space Science</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1z71OxDAQBGA3FOjgDSjSnxLs2DHZ8nQ6fqRINOmtXXsdLJEcst3w9hyCq6YYaTSfEA9KdlaO5nGFLqalfGDmTo1KK2XhVuyntDHm5rAsmRes6bw1aWvmzNwSFg7NqdS0Yj3nciduIn4Wvv_PnZifT_PxtZ3eX96Oh6kNoKClSEBGGTtqE_lJ95aM99wD-QgaaRi19nFAkipYD8HIS0uDHgC87D3rnTB_swEr-lTZfeXLg_ztlHS_FLeCu1LclaJ_AF9hRUE</recordid><startdate>20220110</startdate><enddate>20220110</enddate><creator>Künzel, Sören R.</creator><creator>Saarinen, Theo F.</creator><creator>Liu, Edward W.</creator><creator>Sekhon, Jasjeet S.</creator><general>Taylor &amp; Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20220110</creationdate><title>Linear Aggregation in Tree-based Estimators</title><author>Künzel, Sören R. ; Saarinen, Theo F. ; Liu, Edward W. ; Sekhon, Jasjeet S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d919-bfb9b4146834fe7326b4cce29bcf93ab5833cf5ab01d6c9d40cceb53599c02ce3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biotechnology</topic><topic>Cancer</topic><topic>Ecology</topic><topic>FOS: Biological sciences</topic><topic>FOS: Chemical sciences</topic><topic>FOS: Computer and information sciences</topic><topic>FOS: Mathematics</topic><topic>Information Systems not elsewhere classified</topic><topic>Inorganic Chemistry</topic><topic>Mathematical Sciences not elsewhere classified</topic><topic>Neuroscience</topic><topic>Pharmacology</topic><topic>Space Science</topic><toplevel>online_resources</toplevel><creatorcontrib>Künzel, Sören R.</creatorcontrib><creatorcontrib>Saarinen, Theo F.</creatorcontrib><creatorcontrib>Liu, Edward W.</creatorcontrib><creatorcontrib>Sekhon, Jasjeet S.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Künzel, Sören R.</au><au>Saarinen, Theo F.</au><au>Liu, Edward W.</au><au>Sekhon, Jasjeet S.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Linear Aggregation in Tree-based Estimators</title><date>2022-01-10</date><risdate>2022</risdate><abstract>Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithm’s favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions.</abstract><pub>Taylor &amp; Francis</pub><doi>10.6084/m9.figshare.18131169</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.18131169
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_18131169
source DataCite
subjects Biotechnology
Cancer
Ecology
FOS: Biological sciences
FOS: Chemical sciences
FOS: Computer and information sciences
FOS: Mathematics
Information Systems not elsewhere classified
Inorganic Chemistry
Mathematical Sciences not elsewhere classified
Neuroscience
Pharmacology
Space Science
title Linear Aggregation in Tree-based Estimators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=K%C3%BCnzel,%20S%C3%B6ren%20R.&rft.date=2022-01-10&rft_id=info:doi/10.6084/m9.figshare.18131169&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_18131169%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true