Systematic analysis of Long non-coding RNAs reveals diagnostic biomarkers and potential therapeutic drugs for intervertebral disc degeneration

Long non-coding RNAs (lncRNAs) are related to a variety of human diseases. However, little is known about the role of lncRNA in intervertebral disc degeneration (IDD). LncRNA expression profile of human IDD were downloaded from Gene Expression Omnibus (GEO) database. Potential biomarkers and therape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhan, Jiawen, Wang, Shangquan, Wei, Xu, Feng, Minshan, Yin, Xunlu, Yu, Jie, Han, Tao, Liu, Guangwei, Xuan, Wangwen, Wang, Xiaobo, Xie, Rui, Sun, Kai, Zhu, Liguo
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Zhan, Jiawen
Wang, Shangquan
Wei, Xu
Feng, Minshan
Yin, Xunlu
Yu, Jie
Han, Tao
Liu, Guangwei
Xuan, Wangwen
Wang, Xiaobo
Xie, Rui
Sun, Kai
Zhu, Liguo
description Long non-coding RNAs (lncRNAs) are related to a variety of human diseases. However, little is known about the role of lncRNA in intervertebral disc degeneration (IDD). LncRNA expression profile of human IDD were downloaded from Gene Expression Omnibus (GEO) database. Potential biomarkers and therapeutic drugs for IDD were analyzed by weighted gene co-expression network analysis (WGCNA), R software package Limma, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We identified 1455 differentially expressed genes and 423 differentially expressed lncRNAs. Twenty-six co-expression modules were obtained, among them, the tan, brown, and turquoise modules were most closely related to IDD. The turquoise module contained a large number of differential expressed lncRNAs and genes, these genes were mainly enriched in the MAPK signaling pathway, TGF-beta signaling pathway. Furthermore, we obtained 11,857 LmiRM-Degenerated, these lncRNAs and genes showed higher differential expression multiples and higher expression correlation. After constructing a disease-gene interaction network, 25 disease-specific genes and 9 disease-specific lncRNAs were identified. Combined with the drug-target gene interaction network, three drugs, namely, Calcium citrate, Calcium Phosphate, and Calcium phosphate dihydrate, which may have curative effects on IDD, were determined. Finally, a genetic diagnosis model and lncRNA diagnosis model with 100% diagnostic performance in both the training data set and the validation data set were established based on these genes and lncRNA. This study provided new diagnostic features for IDD and could help design personalized treatment of IDD.
doi_str_mv 10.6084/m9.figshare.15180035
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_15180035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_15180035</sourcerecordid><originalsourceid>FETCH-LOGICAL-d915-d615e1cf8f5a8ce45f7ef38a0cffb7bfc86f61a798ab09917a2274aeb563037d3</originalsourceid><addsrcrecordid>eNo1kE1qwzAQRr3poqS9QRe6gF0ptmx5GUL_wLTQZm_G0sgRtSUjKQFfomeuQpvVDMz7ZpiXZQ-MFjUV1ePcFtqM4QgeC8aZoLTkt9nP1xoizhCNJGBhWoMJxGnSOTsS62wunTKp_XzfBeLxjDAFogyM1oVLZjBuBv-NPqS4IouLaKOBicQjeljwdIGUP42BaOeJsRH9GX3EwSdImZCmOKJNcDTO3mU3Ol3A-_-6yQ7PT4f9a959vLztd12uWsZzVTOOTGqhOQiJFdcN6lIAlVoPzaClqHXNoGkFDLRtWQPbbVMBDrwuadmocpNVf2sVRJAmYr94k_5Ye0b7i61-bvurrf5qq_wF5GVreg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Systematic analysis of Long non-coding RNAs reveals diagnostic biomarkers and potential therapeutic drugs for intervertebral disc degeneration</title><source>DataCite</source><creator>Zhan, Jiawen ; Wang, Shangquan ; Wei, Xu ; Feng, Minshan ; Yin, Xunlu ; Yu, Jie ; Han, Tao ; Liu, Guangwei ; Xuan, Wangwen ; Wang, Xiaobo ; Xie, Rui ; Sun, Kai ; Zhu, Liguo</creator><creatorcontrib>Zhan, Jiawen ; Wang, Shangquan ; Wei, Xu ; Feng, Minshan ; Yin, Xunlu ; Yu, Jie ; Han, Tao ; Liu, Guangwei ; Xuan, Wangwen ; Wang, Xiaobo ; Xie, Rui ; Sun, Kai ; Zhu, Liguo</creatorcontrib><description>Long non-coding RNAs (lncRNAs) are related to a variety of human diseases. However, little is known about the role of lncRNA in intervertebral disc degeneration (IDD). LncRNA expression profile of human IDD were downloaded from Gene Expression Omnibus (GEO) database. Potential biomarkers and therapeutic drugs for IDD were analyzed by weighted gene co-expression network analysis (WGCNA), R software package Limma, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We identified 1455 differentially expressed genes and 423 differentially expressed lncRNAs. Twenty-six co-expression modules were obtained, among them, the tan, brown, and turquoise modules were most closely related to IDD. The turquoise module contained a large number of differential expressed lncRNAs and genes, these genes were mainly enriched in the MAPK signaling pathway, TGF-beta signaling pathway. Furthermore, we obtained 11,857 LmiRM-Degenerated, these lncRNAs and genes showed higher differential expression multiples and higher expression correlation. After constructing a disease-gene interaction network, 25 disease-specific genes and 9 disease-specific lncRNAs were identified. Combined with the drug-target gene interaction network, three drugs, namely, Calcium citrate, Calcium Phosphate, and Calcium phosphate dihydrate, which may have curative effects on IDD, were determined. Finally, a genetic diagnosis model and lncRNA diagnosis model with 100% diagnostic performance in both the training data set and the validation data set were established based on these genes and lncRNA. This study provided new diagnostic features for IDD and could help design personalized treatment of IDD.</description><identifier>DOI: 10.6084/m9.figshare.15180035</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Biochemistry ; Biological Sciences not elsewhere classified ; Cell Biology ; FOS: Biological sciences ; FOS: Health sciences ; Genetics ; Infectious Diseases ; Medicine ; Molecular Biology ; Pharmacology ; Physiology ; Virology</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.15180035$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zhan, Jiawen</creatorcontrib><creatorcontrib>Wang, Shangquan</creatorcontrib><creatorcontrib>Wei, Xu</creatorcontrib><creatorcontrib>Feng, Minshan</creatorcontrib><creatorcontrib>Yin, Xunlu</creatorcontrib><creatorcontrib>Yu, Jie</creatorcontrib><creatorcontrib>Han, Tao</creatorcontrib><creatorcontrib>Liu, Guangwei</creatorcontrib><creatorcontrib>Xuan, Wangwen</creatorcontrib><creatorcontrib>Wang, Xiaobo</creatorcontrib><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Zhu, Liguo</creatorcontrib><title>Systematic analysis of Long non-coding RNAs reveals diagnostic biomarkers and potential therapeutic drugs for intervertebral disc degeneration</title><description>Long non-coding RNAs (lncRNAs) are related to a variety of human diseases. However, little is known about the role of lncRNA in intervertebral disc degeneration (IDD). LncRNA expression profile of human IDD were downloaded from Gene Expression Omnibus (GEO) database. Potential biomarkers and therapeutic drugs for IDD were analyzed by weighted gene co-expression network analysis (WGCNA), R software package Limma, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We identified 1455 differentially expressed genes and 423 differentially expressed lncRNAs. Twenty-six co-expression modules were obtained, among them, the tan, brown, and turquoise modules were most closely related to IDD. The turquoise module contained a large number of differential expressed lncRNAs and genes, these genes were mainly enriched in the MAPK signaling pathway, TGF-beta signaling pathway. Furthermore, we obtained 11,857 LmiRM-Degenerated, these lncRNAs and genes showed higher differential expression multiples and higher expression correlation. After constructing a disease-gene interaction network, 25 disease-specific genes and 9 disease-specific lncRNAs were identified. Combined with the drug-target gene interaction network, three drugs, namely, Calcium citrate, Calcium Phosphate, and Calcium phosphate dihydrate, which may have curative effects on IDD, were determined. Finally, a genetic diagnosis model and lncRNA diagnosis model with 100% diagnostic performance in both the training data set and the validation data set were established based on these genes and lncRNA. This study provided new diagnostic features for IDD and could help design personalized treatment of IDD.</description><subject>Biochemistry</subject><subject>Biological Sciences not elsewhere classified</subject><subject>Cell Biology</subject><subject>FOS: Biological sciences</subject><subject>FOS: Health sciences</subject><subject>Genetics</subject><subject>Infectious Diseases</subject><subject>Medicine</subject><subject>Molecular Biology</subject><subject>Pharmacology</subject><subject>Physiology</subject><subject>Virology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1kE1qwzAQRr3poqS9QRe6gF0ptmx5GUL_wLTQZm_G0sgRtSUjKQFfomeuQpvVDMz7ZpiXZQ-MFjUV1ePcFtqM4QgeC8aZoLTkt9nP1xoizhCNJGBhWoMJxGnSOTsS62wunTKp_XzfBeLxjDAFogyM1oVLZjBuBv-NPqS4IouLaKOBicQjeljwdIGUP42BaOeJsRH9GX3EwSdImZCmOKJNcDTO3mU3Ol3A-_-6yQ7PT4f9a959vLztd12uWsZzVTOOTGqhOQiJFdcN6lIAlVoPzaClqHXNoGkFDLRtWQPbbVMBDrwuadmocpNVf2sVRJAmYr94k_5Ye0b7i61-bvurrf5qq_wF5GVreg</recordid><startdate>20210817</startdate><enddate>20210817</enddate><creator>Zhan, Jiawen</creator><creator>Wang, Shangquan</creator><creator>Wei, Xu</creator><creator>Feng, Minshan</creator><creator>Yin, Xunlu</creator><creator>Yu, Jie</creator><creator>Han, Tao</creator><creator>Liu, Guangwei</creator><creator>Xuan, Wangwen</creator><creator>Wang, Xiaobo</creator><creator>Xie, Rui</creator><creator>Sun, Kai</creator><creator>Zhu, Liguo</creator><general>Taylor &amp; Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20210817</creationdate><title>Systematic analysis of Long non-coding RNAs reveals diagnostic biomarkers and potential therapeutic drugs for intervertebral disc degeneration</title><author>Zhan, Jiawen ; Wang, Shangquan ; Wei, Xu ; Feng, Minshan ; Yin, Xunlu ; Yu, Jie ; Han, Tao ; Liu, Guangwei ; Xuan, Wangwen ; Wang, Xiaobo ; Xie, Rui ; Sun, Kai ; Zhu, Liguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d915-d615e1cf8f5a8ce45f7ef38a0cffb7bfc86f61a798ab09917a2274aeb563037d3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biological Sciences not elsewhere classified</topic><topic>Cell Biology</topic><topic>FOS: Biological sciences</topic><topic>FOS: Health sciences</topic><topic>Genetics</topic><topic>Infectious Diseases</topic><topic>Medicine</topic><topic>Molecular Biology</topic><topic>Pharmacology</topic><topic>Physiology</topic><topic>Virology</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Jiawen</creatorcontrib><creatorcontrib>Wang, Shangquan</creatorcontrib><creatorcontrib>Wei, Xu</creatorcontrib><creatorcontrib>Feng, Minshan</creatorcontrib><creatorcontrib>Yin, Xunlu</creatorcontrib><creatorcontrib>Yu, Jie</creatorcontrib><creatorcontrib>Han, Tao</creatorcontrib><creatorcontrib>Liu, Guangwei</creatorcontrib><creatorcontrib>Xuan, Wangwen</creatorcontrib><creatorcontrib>Wang, Xiaobo</creatorcontrib><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Zhu, Liguo</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhan, Jiawen</au><au>Wang, Shangquan</au><au>Wei, Xu</au><au>Feng, Minshan</au><au>Yin, Xunlu</au><au>Yu, Jie</au><au>Han, Tao</au><au>Liu, Guangwei</au><au>Xuan, Wangwen</au><au>Wang, Xiaobo</au><au>Xie, Rui</au><au>Sun, Kai</au><au>Zhu, Liguo</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Systematic analysis of Long non-coding RNAs reveals diagnostic biomarkers and potential therapeutic drugs for intervertebral disc degeneration</title><date>2021-08-17</date><risdate>2021</risdate><abstract>Long non-coding RNAs (lncRNAs) are related to a variety of human diseases. However, little is known about the role of lncRNA in intervertebral disc degeneration (IDD). LncRNA expression profile of human IDD were downloaded from Gene Expression Omnibus (GEO) database. Potential biomarkers and therapeutic drugs for IDD were analyzed by weighted gene co-expression network analysis (WGCNA), R software package Limma, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We identified 1455 differentially expressed genes and 423 differentially expressed lncRNAs. Twenty-six co-expression modules were obtained, among them, the tan, brown, and turquoise modules were most closely related to IDD. The turquoise module contained a large number of differential expressed lncRNAs and genes, these genes were mainly enriched in the MAPK signaling pathway, TGF-beta signaling pathway. Furthermore, we obtained 11,857 LmiRM-Degenerated, these lncRNAs and genes showed higher differential expression multiples and higher expression correlation. After constructing a disease-gene interaction network, 25 disease-specific genes and 9 disease-specific lncRNAs were identified. Combined with the drug-target gene interaction network, three drugs, namely, Calcium citrate, Calcium Phosphate, and Calcium phosphate dihydrate, which may have curative effects on IDD, were determined. Finally, a genetic diagnosis model and lncRNA diagnosis model with 100% diagnostic performance in both the training data set and the validation data set were established based on these genes and lncRNA. This study provided new diagnostic features for IDD and could help design personalized treatment of IDD.</abstract><pub>Taylor &amp; Francis</pub><doi>10.6084/m9.figshare.15180035</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.15180035
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_15180035
source DataCite
subjects Biochemistry
Biological Sciences not elsewhere classified
Cell Biology
FOS: Biological sciences
FOS: Health sciences
Genetics
Infectious Diseases
Medicine
Molecular Biology
Pharmacology
Physiology
Virology
title Systematic analysis of Long non-coding RNAs reveals diagnostic biomarkers and potential therapeutic drugs for intervertebral disc degeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Zhan,%20Jiawen&rft.date=2021-08-17&rft_id=info:doi/10.6084/m9.figshare.15180035&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_15180035%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true