Silencing PEX26 as an unconventional mode to kill drug-resistant cancer cells and forestall drug resistance

Promoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dahabieh, Michael S., Huang, Fan, Goncalves, Christophe, González, Raúl Ernesto Flores, Prabhu, Sathyen, Bolt, Alicia, Di Pietro, Erminia, Khoury, Elie, Heath, John, Xu, Zi Yi, Rémy-Sarrazin, Joelle, Mann, Koren K., Orthwein, Alexandre, Boisvert, François-Michel, Braverman, Nancy, Miller, Wilson H., del Rincón, Sonia V.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Dahabieh, Michael S.
Huang, Fan
Goncalves, Christophe
González, Raúl Ernesto Flores
Prabhu, Sathyen
Bolt, Alicia
Di Pietro, Erminia
Khoury, Elie
Heath, John
Xu, Zi Yi
Rémy-Sarrazin, Joelle
Mann, Koren K.
Orthwein, Alexandre
Boisvert, François-Michel
Braverman, Nancy
Miller, Wilson H.
del Rincón, Sonia V.
description Promoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sensitive U937 lymphoma cells and isogenic HDACi-resistant cells. Mass spectrometry on autophagosome-enriched fractions revealed that HDACi-resistant cells undergo elevated pexophagy, or autophagy of the peroxisome, an organelle that supports tumor growth. To disturb peroxisome homeostasis, we enhanced pexophagy in HDACi-resistant cells via genetic silencing of peroxisome exportomer complex components (PEX1, PEX6, or PEX26). This consequently sensitized resistant cells to HDACi-mediated apoptosis, which was rescued by inhibiting ATM/ataxia-telangiectasia mutated (ATM serine/threonine kinase), a mediator of pexophagy. We subsequently engineered melanoma cells to stably repress PEX26 using CRISPR interference (CRISPRi). Melanoma cells with repressed PEX26 expression showed evidence of both increased pexophagy and peroxisomal matrix protein import defects versus single guide scrambled (sgSCR) controls. In vivo studies showed that sgPEX26 melanoma xenografts recurred less compared to sgSCR xenografts, following the development of resistance to mitogen-activated protein kinase (MAPK)-targeted therapy. Finally, prognostic analysis of publicly available datasets showed that low expression levels of PEX26, PEX6 and MTOR, were significantly associated with prolonged patient survival in lymphoma, lung cancer and melanoma cohorts. Our work highlighted that drugs designed to disrupt peroxisome homeostasis may serve as unconventional therapies to combat therapy resistance in cancer. Abbreviations: ABCD3/PMP70: ATP binding cassette subfamily D member 3; ACOX1: acyl-CoA oxidase 1; AP: autophagosome; COX: cytochrome c oxidase; CQ: chloroquine; CRISPRi: clustered regularly interspaced short palindromic repeats interference; DLBCL: diffuse large B-cell lymphoma; GO: gene ontology; dCas9: Cas9 endonuclease dead, or dead Cas9; HDACi: histone deacetylase inhibitors; IHC: Immunohistochemistry; LAMP2: lysosomal associated membrane protein 2; LCFAs: long-chain fatty acids; LFQ-MS: label-free quantitation mass spectrometry; LPC: lysophoshatidylcholine; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PBD: peroxisome biogenesis
doi_str_mv 10.6084/m9.figshare.14714909
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_14714909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_14714909</sourcerecordid><originalsourceid>FETCH-LOGICAL-d919-590d1bcc42ef20fe55043820360a6abb20496cbb794d28325ac39fb1334edccb3</originalsourceid><addsrcrecordid>eNo1kL1OwzAUhb0woMIbMPgFEvyXNB5RVX6kSiDRgc26vr4JVh0HJS4Sbw8V7XSG850zfIzdSVG3ojP3o637OCyfMFMtzVoaK-w1O7zHRBljHvjb9kO1HBYOmR8zTvmbcolThsTHKRAvEz_ElHiYj0M10xKXArlwhIw0c6SUTtPA--mvLHAm-YVEumFXPaSFbs-5YvvH7X7zXO1en142D7sqWGmrxoogPaJR1CvRU9MIozsldCugBe-VMLZF79fWBNVp1QBq23uptaGA6PWKmf_bAAUwFnJfcxxh_nFSuJMKN1p3UeEuKvQvpclcRQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Silencing PEX26 as an unconventional mode to kill drug-resistant cancer cells and forestall drug resistance</title><source>DataCite</source><creator>Dahabieh, Michael S. ; Huang, Fan ; Goncalves, Christophe ; González, Raúl Ernesto Flores ; Prabhu, Sathyen ; Bolt, Alicia ; Di Pietro, Erminia ; Khoury, Elie ; Heath, John ; Xu, Zi Yi ; Rémy-Sarrazin, Joelle ; Mann, Koren K. ; Orthwein, Alexandre ; Boisvert, François-Michel ; Braverman, Nancy ; Miller, Wilson H. ; del Rincón, Sonia V.</creator><creatorcontrib>Dahabieh, Michael S. ; Huang, Fan ; Goncalves, Christophe ; González, Raúl Ernesto Flores ; Prabhu, Sathyen ; Bolt, Alicia ; Di Pietro, Erminia ; Khoury, Elie ; Heath, John ; Xu, Zi Yi ; Rémy-Sarrazin, Joelle ; Mann, Koren K. ; Orthwein, Alexandre ; Boisvert, François-Michel ; Braverman, Nancy ; Miller, Wilson H. ; del Rincón, Sonia V.</creatorcontrib><description>Promoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sensitive U937 lymphoma cells and isogenic HDACi-resistant cells. Mass spectrometry on autophagosome-enriched fractions revealed that HDACi-resistant cells undergo elevated pexophagy, or autophagy of the peroxisome, an organelle that supports tumor growth. To disturb peroxisome homeostasis, we enhanced pexophagy in HDACi-resistant cells via genetic silencing of peroxisome exportomer complex components (PEX1, PEX6, or PEX26). This consequently sensitized resistant cells to HDACi-mediated apoptosis, which was rescued by inhibiting ATM/ataxia-telangiectasia mutated (ATM serine/threonine kinase), a mediator of pexophagy. We subsequently engineered melanoma cells to stably repress PEX26 using CRISPR interference (CRISPRi). Melanoma cells with repressed PEX26 expression showed evidence of both increased pexophagy and peroxisomal matrix protein import defects versus single guide scrambled (sgSCR) controls. In vivo studies showed that sgPEX26 melanoma xenografts recurred less compared to sgSCR xenografts, following the development of resistance to mitogen-activated protein kinase (MAPK)-targeted therapy. Finally, prognostic analysis of publicly available datasets showed that low expression levels of PEX26, PEX6 and MTOR, were significantly associated with prolonged patient survival in lymphoma, lung cancer and melanoma cohorts. Our work highlighted that drugs designed to disrupt peroxisome homeostasis may serve as unconventional therapies to combat therapy resistance in cancer. Abbreviations: ABCD3/PMP70: ATP binding cassette subfamily D member 3; ACOX1: acyl-CoA oxidase 1; AP: autophagosome; COX: cytochrome c oxidase; CQ: chloroquine; CRISPRi: clustered regularly interspaced short palindromic repeats interference; DLBCL: diffuse large B-cell lymphoma; GO: gene ontology; dCas9: Cas9 endonuclease dead, or dead Cas9; HDACi: histone deacetylase inhibitors; IHC: Immunohistochemistry; LAMP2: lysosomal associated membrane protein 2; LCFAs: long-chain fatty acids; LFQ-MS: label-free quantitation mass spectrometry; LPC: lysophoshatidylcholine; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PBD: peroxisome biogenesis disorders; PTS1: peroxisomal targeting signal 1; ROS: reactive oxygen species; sgRNA: single guide RNA; VLCFAs: very-long chain fatty acids; Vor: vorinostat; WO: wash-off.</description><identifier>DOI: 10.6084/m9.figshare.14714909</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Biochemistry ; Biophysics ; Biotechnology ; Cancer ; Cell Biology ; Chemical Sciences not elsewhere classified ; Developmental Biology ; FOS: Biological sciences ; Genetics ; Hematology ; Microbiology ; Molecular Biology ; Pharmacology</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.14714909$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dahabieh, Michael S.</creatorcontrib><creatorcontrib>Huang, Fan</creatorcontrib><creatorcontrib>Goncalves, Christophe</creatorcontrib><creatorcontrib>González, Raúl Ernesto Flores</creatorcontrib><creatorcontrib>Prabhu, Sathyen</creatorcontrib><creatorcontrib>Bolt, Alicia</creatorcontrib><creatorcontrib>Di Pietro, Erminia</creatorcontrib><creatorcontrib>Khoury, Elie</creatorcontrib><creatorcontrib>Heath, John</creatorcontrib><creatorcontrib>Xu, Zi Yi</creatorcontrib><creatorcontrib>Rémy-Sarrazin, Joelle</creatorcontrib><creatorcontrib>Mann, Koren K.</creatorcontrib><creatorcontrib>Orthwein, Alexandre</creatorcontrib><creatorcontrib>Boisvert, François-Michel</creatorcontrib><creatorcontrib>Braverman, Nancy</creatorcontrib><creatorcontrib>Miller, Wilson H.</creatorcontrib><creatorcontrib>del Rincón, Sonia V.</creatorcontrib><title>Silencing PEX26 as an unconventional mode to kill drug-resistant cancer cells and forestall drug resistance</title><description>Promoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sensitive U937 lymphoma cells and isogenic HDACi-resistant cells. Mass spectrometry on autophagosome-enriched fractions revealed that HDACi-resistant cells undergo elevated pexophagy, or autophagy of the peroxisome, an organelle that supports tumor growth. To disturb peroxisome homeostasis, we enhanced pexophagy in HDACi-resistant cells via genetic silencing of peroxisome exportomer complex components (PEX1, PEX6, or PEX26). This consequently sensitized resistant cells to HDACi-mediated apoptosis, which was rescued by inhibiting ATM/ataxia-telangiectasia mutated (ATM serine/threonine kinase), a mediator of pexophagy. We subsequently engineered melanoma cells to stably repress PEX26 using CRISPR interference (CRISPRi). Melanoma cells with repressed PEX26 expression showed evidence of both increased pexophagy and peroxisomal matrix protein import defects versus single guide scrambled (sgSCR) controls. In vivo studies showed that sgPEX26 melanoma xenografts recurred less compared to sgSCR xenografts, following the development of resistance to mitogen-activated protein kinase (MAPK)-targeted therapy. Finally, prognostic analysis of publicly available datasets showed that low expression levels of PEX26, PEX6 and MTOR, were significantly associated with prolonged patient survival in lymphoma, lung cancer and melanoma cohorts. Our work highlighted that drugs designed to disrupt peroxisome homeostasis may serve as unconventional therapies to combat therapy resistance in cancer. Abbreviations: ABCD3/PMP70: ATP binding cassette subfamily D member 3; ACOX1: acyl-CoA oxidase 1; AP: autophagosome; COX: cytochrome c oxidase; CQ: chloroquine; CRISPRi: clustered regularly interspaced short palindromic repeats interference; DLBCL: diffuse large B-cell lymphoma; GO: gene ontology; dCas9: Cas9 endonuclease dead, or dead Cas9; HDACi: histone deacetylase inhibitors; IHC: Immunohistochemistry; LAMP2: lysosomal associated membrane protein 2; LCFAs: long-chain fatty acids; LFQ-MS: label-free quantitation mass spectrometry; LPC: lysophoshatidylcholine; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PBD: peroxisome biogenesis disorders; PTS1: peroxisomal targeting signal 1; ROS: reactive oxygen species; sgRNA: single guide RNA; VLCFAs: very-long chain fatty acids; Vor: vorinostat; WO: wash-off.</description><subject>Biochemistry</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Chemical Sciences not elsewhere classified</subject><subject>Developmental Biology</subject><subject>FOS: Biological sciences</subject><subject>Genetics</subject><subject>Hematology</subject><subject>Microbiology</subject><subject>Molecular Biology</subject><subject>Pharmacology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1kL1OwzAUhb0woMIbMPgFEvyXNB5RVX6kSiDRgc26vr4JVh0HJS4Sbw8V7XSG850zfIzdSVG3ojP3o637OCyfMFMtzVoaK-w1O7zHRBljHvjb9kO1HBYOmR8zTvmbcolThsTHKRAvEz_ElHiYj0M10xKXArlwhIw0c6SUTtPA--mvLHAm-YVEumFXPaSFbs-5YvvH7X7zXO1en142D7sqWGmrxoogPaJR1CvRU9MIozsldCugBe-VMLZF79fWBNVp1QBq23uptaGA6PWKmf_bAAUwFnJfcxxh_nFSuJMKN1p3UeEuKvQvpclcRQ</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>Dahabieh, Michael S.</creator><creator>Huang, Fan</creator><creator>Goncalves, Christophe</creator><creator>González, Raúl Ernesto Flores</creator><creator>Prabhu, Sathyen</creator><creator>Bolt, Alicia</creator><creator>Di Pietro, Erminia</creator><creator>Khoury, Elie</creator><creator>Heath, John</creator><creator>Xu, Zi Yi</creator><creator>Rémy-Sarrazin, Joelle</creator><creator>Mann, Koren K.</creator><creator>Orthwein, Alexandre</creator><creator>Boisvert, François-Michel</creator><creator>Braverman, Nancy</creator><creator>Miller, Wilson H.</creator><creator>del Rincón, Sonia V.</creator><general>Taylor &amp; Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20210621</creationdate><title>Silencing PEX26 as an unconventional mode to kill drug-resistant cancer cells and forestall drug resistance</title><author>Dahabieh, Michael S. ; Huang, Fan ; Goncalves, Christophe ; González, Raúl Ernesto Flores ; Prabhu, Sathyen ; Bolt, Alicia ; Di Pietro, Erminia ; Khoury, Elie ; Heath, John ; Xu, Zi Yi ; Rémy-Sarrazin, Joelle ; Mann, Koren K. ; Orthwein, Alexandre ; Boisvert, François-Michel ; Braverman, Nancy ; Miller, Wilson H. ; del Rincón, Sonia V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d919-590d1bcc42ef20fe55043820360a6abb20496cbb794d28325ac39fb1334edccb3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Chemical Sciences not elsewhere classified</topic><topic>Developmental Biology</topic><topic>FOS: Biological sciences</topic><topic>Genetics</topic><topic>Hematology</topic><topic>Microbiology</topic><topic>Molecular Biology</topic><topic>Pharmacology</topic><toplevel>online_resources</toplevel><creatorcontrib>Dahabieh, Michael S.</creatorcontrib><creatorcontrib>Huang, Fan</creatorcontrib><creatorcontrib>Goncalves, Christophe</creatorcontrib><creatorcontrib>González, Raúl Ernesto Flores</creatorcontrib><creatorcontrib>Prabhu, Sathyen</creatorcontrib><creatorcontrib>Bolt, Alicia</creatorcontrib><creatorcontrib>Di Pietro, Erminia</creatorcontrib><creatorcontrib>Khoury, Elie</creatorcontrib><creatorcontrib>Heath, John</creatorcontrib><creatorcontrib>Xu, Zi Yi</creatorcontrib><creatorcontrib>Rémy-Sarrazin, Joelle</creatorcontrib><creatorcontrib>Mann, Koren K.</creatorcontrib><creatorcontrib>Orthwein, Alexandre</creatorcontrib><creatorcontrib>Boisvert, François-Michel</creatorcontrib><creatorcontrib>Braverman, Nancy</creatorcontrib><creatorcontrib>Miller, Wilson H.</creatorcontrib><creatorcontrib>del Rincón, Sonia V.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dahabieh, Michael S.</au><au>Huang, Fan</au><au>Goncalves, Christophe</au><au>González, Raúl Ernesto Flores</au><au>Prabhu, Sathyen</au><au>Bolt, Alicia</au><au>Di Pietro, Erminia</au><au>Khoury, Elie</au><au>Heath, John</au><au>Xu, Zi Yi</au><au>Rémy-Sarrazin, Joelle</au><au>Mann, Koren K.</au><au>Orthwein, Alexandre</au><au>Boisvert, François-Michel</au><au>Braverman, Nancy</au><au>Miller, Wilson H.</au><au>del Rincón, Sonia V.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Silencing PEX26 as an unconventional mode to kill drug-resistant cancer cells and forestall drug resistance</title><date>2021-06-21</date><risdate>2021</risdate><abstract>Promoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sensitive U937 lymphoma cells and isogenic HDACi-resistant cells. Mass spectrometry on autophagosome-enriched fractions revealed that HDACi-resistant cells undergo elevated pexophagy, or autophagy of the peroxisome, an organelle that supports tumor growth. To disturb peroxisome homeostasis, we enhanced pexophagy in HDACi-resistant cells via genetic silencing of peroxisome exportomer complex components (PEX1, PEX6, or PEX26). This consequently sensitized resistant cells to HDACi-mediated apoptosis, which was rescued by inhibiting ATM/ataxia-telangiectasia mutated (ATM serine/threonine kinase), a mediator of pexophagy. We subsequently engineered melanoma cells to stably repress PEX26 using CRISPR interference (CRISPRi). Melanoma cells with repressed PEX26 expression showed evidence of both increased pexophagy and peroxisomal matrix protein import defects versus single guide scrambled (sgSCR) controls. In vivo studies showed that sgPEX26 melanoma xenografts recurred less compared to sgSCR xenografts, following the development of resistance to mitogen-activated protein kinase (MAPK)-targeted therapy. Finally, prognostic analysis of publicly available datasets showed that low expression levels of PEX26, PEX6 and MTOR, were significantly associated with prolonged patient survival in lymphoma, lung cancer and melanoma cohorts. Our work highlighted that drugs designed to disrupt peroxisome homeostasis may serve as unconventional therapies to combat therapy resistance in cancer. Abbreviations: ABCD3/PMP70: ATP binding cassette subfamily D member 3; ACOX1: acyl-CoA oxidase 1; AP: autophagosome; COX: cytochrome c oxidase; CQ: chloroquine; CRISPRi: clustered regularly interspaced short palindromic repeats interference; DLBCL: diffuse large B-cell lymphoma; GO: gene ontology; dCas9: Cas9 endonuclease dead, or dead Cas9; HDACi: histone deacetylase inhibitors; IHC: Immunohistochemistry; LAMP2: lysosomal associated membrane protein 2; LCFAs: long-chain fatty acids; LFQ-MS: label-free quantitation mass spectrometry; LPC: lysophoshatidylcholine; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PBD: peroxisome biogenesis disorders; PTS1: peroxisomal targeting signal 1; ROS: reactive oxygen species; sgRNA: single guide RNA; VLCFAs: very-long chain fatty acids; Vor: vorinostat; WO: wash-off.</abstract><pub>Taylor &amp; Francis</pub><doi>10.6084/m9.figshare.14714909</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.14714909
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_14714909
source DataCite
subjects Biochemistry
Biophysics
Biotechnology
Cancer
Cell Biology
Chemical Sciences not elsewhere classified
Developmental Biology
FOS: Biological sciences
Genetics
Hematology
Microbiology
Molecular Biology
Pharmacology
title Silencing PEX26 as an unconventional mode to kill drug-resistant cancer cells and forestall drug resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Dahabieh,%20Michael%20S.&rft.date=2021-06-21&rft_id=info:doi/10.6084/m9.figshare.14714909&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_14714909%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true