Exploring alternative solid waste management strategies for achieving policy goals

The authors previously analysed a real-world solid waste management (SWM) system using the solid waste optimization life-cycle framework (SWOLF) to identify optimal SWM strategies that meet modelled objectives (e.g. cost, environmental impacts, landfill diversion). While mathematically optimal strat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jaunich, Megan K., Levis, James W., DeCarolis, Joseph F., Barlaz, Morton A., S. Ranji Ranjithan
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Jaunich, Megan K.
Levis, James W.
DeCarolis, Joseph F.
Barlaz, Morton A.
S. Ranji Ranjithan
description The authors previously analysed a real-world solid waste management (SWM) system using the solid waste optimization life-cycle framework (SWOLF) to identify optimal SWM strategies that meet modelled objectives (e.g. cost, environmental impacts, landfill diversion). While mathematically optimal strategies can support SWM decision making, they may not be readily implementable because of unmodelled objectives (e.g. practical limitations, social preferences, political and management considerations). A mathematical programming technique extending SWOLF is used to systematically identify, for several scenarios, different ‘optimal’ SWM strategies that are maximally different from each other in terms of waste flows, while meeting modelled objectives and constraints. The performance with respect to unmodelled issues was analysed to demonstrate the flexibility in potential strategies. Practitioner feedback highlighted implementation challenges due to existing practices; however, insights gained from this exercise led to more plausible and acceptable strategies by incrementally modifying the initial SWM alternatives generated.
doi_str_mv 10.6084/m9.figshare.12848960
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_12848960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_12848960</sourcerecordid><originalsourceid>FETCH-LOGICAL-d910-3ef5c27c7d35e71a6e8f5f7120f77d764bd6cfa6c3d8f388f86616fbc59d97b83</originalsourceid><addsrcrecordid>eNo1j8lqwzAURbXpoqT9gy70A3Yly9awLCEdIFAo2Ytn6ckReEISafP3TWizOpt7DxxCnjirJdPt82TqEId8hIQ1b3SrjWT35Gv3s45LivNAYSyYZijxhDQvY_T0G3JBOsEMA044F5pLgoJDxEzDkii4Y8TT9bte9u5MhwXG_EDuwgX4-M8NObzuDtv3av_59rF92VfecFYJDJ1rlFNedKg4SNShC4o3LCjllWx7L10A6YTXQWgdtJRcht51xhvVa7Eh7Z_WQwEXC9o1xQnS2XJmr8V2MvZWbG_F4hcWIlS-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Exploring alternative solid waste management strategies for achieving policy goals</title><source>DataCite</source><creator>Jaunich, Megan K. ; Levis, James W. ; DeCarolis, Joseph F. ; Barlaz, Morton A. ; S. Ranji Ranjithan</creator><creatorcontrib>Jaunich, Megan K. ; Levis, James W. ; DeCarolis, Joseph F. ; Barlaz, Morton A. ; S. Ranji Ranjithan</creatorcontrib><description>The authors previously analysed a real-world solid waste management (SWM) system using the solid waste optimization life-cycle framework (SWOLF) to identify optimal SWM strategies that meet modelled objectives (e.g. cost, environmental impacts, landfill diversion). While mathematically optimal strategies can support SWM decision making, they may not be readily implementable because of unmodelled objectives (e.g. practical limitations, social preferences, political and management considerations). A mathematical programming technique extending SWOLF is used to systematically identify, for several scenarios, different ‘optimal’ SWM strategies that are maximally different from each other in terms of waste flows, while meeting modelled objectives and constraints. The performance with respect to unmodelled issues was analysed to demonstrate the flexibility in potential strategies. Practitioner feedback highlighted implementation challenges due to existing practices; however, insights gained from this exercise led to more plausible and acceptable strategies by incrementally modifying the initial SWM alternatives generated.</description><identifier>DOI: 10.6084/m9.figshare.12848960</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Biological Sciences not elsewhere classified ; FOS: Biological sciences ; FOS: Mathematics ; Mathematical Sciences not elsewhere classified ; Medicine ; Science Policy ; Space Science</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.12848960$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jaunich, Megan K.</creatorcontrib><creatorcontrib>Levis, James W.</creatorcontrib><creatorcontrib>DeCarolis, Joseph F.</creatorcontrib><creatorcontrib>Barlaz, Morton A.</creatorcontrib><creatorcontrib>S. Ranji Ranjithan</creatorcontrib><title>Exploring alternative solid waste management strategies for achieving policy goals</title><description>The authors previously analysed a real-world solid waste management (SWM) system using the solid waste optimization life-cycle framework (SWOLF) to identify optimal SWM strategies that meet modelled objectives (e.g. cost, environmental impacts, landfill diversion). While mathematically optimal strategies can support SWM decision making, they may not be readily implementable because of unmodelled objectives (e.g. practical limitations, social preferences, political and management considerations). A mathematical programming technique extending SWOLF is used to systematically identify, for several scenarios, different ‘optimal’ SWM strategies that are maximally different from each other in terms of waste flows, while meeting modelled objectives and constraints. The performance with respect to unmodelled issues was analysed to demonstrate the flexibility in potential strategies. Practitioner feedback highlighted implementation challenges due to existing practices; however, insights gained from this exercise led to more plausible and acceptable strategies by incrementally modifying the initial SWM alternatives generated.</description><subject>Biological Sciences not elsewhere classified</subject><subject>FOS: Biological sciences</subject><subject>FOS: Mathematics</subject><subject>Mathematical Sciences not elsewhere classified</subject><subject>Medicine</subject><subject>Science Policy</subject><subject>Space Science</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1j8lqwzAURbXpoqT9gy70A3Yly9awLCEdIFAo2Ytn6ckReEISafP3TWizOpt7DxxCnjirJdPt82TqEId8hIQ1b3SrjWT35Gv3s45LivNAYSyYZijxhDQvY_T0G3JBOsEMA044F5pLgoJDxEzDkii4Y8TT9bte9u5MhwXG_EDuwgX4-M8NObzuDtv3av_59rF92VfecFYJDJ1rlFNedKg4SNShC4o3LCjllWx7L10A6YTXQWgdtJRcht51xhvVa7Eh7Z_WQwEXC9o1xQnS2XJmr8V2MvZWbG_F4hcWIlS-</recordid><startdate>20200824</startdate><enddate>20200824</enddate><creator>Jaunich, Megan K.</creator><creator>Levis, James W.</creator><creator>DeCarolis, Joseph F.</creator><creator>Barlaz, Morton A.</creator><creator>S. Ranji Ranjithan</creator><general>Taylor &amp; Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20200824</creationdate><title>Exploring alternative solid waste management strategies for achieving policy goals</title><author>Jaunich, Megan K. ; Levis, James W. ; DeCarolis, Joseph F. ; Barlaz, Morton A. ; S. Ranji Ranjithan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d910-3ef5c27c7d35e71a6e8f5f7120f77d764bd6cfa6c3d8f388f86616fbc59d97b83</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Sciences not elsewhere classified</topic><topic>FOS: Biological sciences</topic><topic>FOS: Mathematics</topic><topic>Mathematical Sciences not elsewhere classified</topic><topic>Medicine</topic><topic>Science Policy</topic><topic>Space Science</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaunich, Megan K.</creatorcontrib><creatorcontrib>Levis, James W.</creatorcontrib><creatorcontrib>DeCarolis, Joseph F.</creatorcontrib><creatorcontrib>Barlaz, Morton A.</creatorcontrib><creatorcontrib>S. Ranji Ranjithan</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaunich, Megan K.</au><au>Levis, James W.</au><au>DeCarolis, Joseph F.</au><au>Barlaz, Morton A.</au><au>S. Ranji Ranjithan</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Exploring alternative solid waste management strategies for achieving policy goals</title><date>2020-08-24</date><risdate>2020</risdate><abstract>The authors previously analysed a real-world solid waste management (SWM) system using the solid waste optimization life-cycle framework (SWOLF) to identify optimal SWM strategies that meet modelled objectives (e.g. cost, environmental impacts, landfill diversion). While mathematically optimal strategies can support SWM decision making, they may not be readily implementable because of unmodelled objectives (e.g. practical limitations, social preferences, political and management considerations). A mathematical programming technique extending SWOLF is used to systematically identify, for several scenarios, different ‘optimal’ SWM strategies that are maximally different from each other in terms of waste flows, while meeting modelled objectives and constraints. The performance with respect to unmodelled issues was analysed to demonstrate the flexibility in potential strategies. Practitioner feedback highlighted implementation challenges due to existing practices; however, insights gained from this exercise led to more plausible and acceptable strategies by incrementally modifying the initial SWM alternatives generated.</abstract><pub>Taylor &amp; Francis</pub><doi>10.6084/m9.figshare.12848960</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.12848960
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_12848960
source DataCite
subjects Biological Sciences not elsewhere classified
FOS: Biological sciences
FOS: Mathematics
Mathematical Sciences not elsewhere classified
Medicine
Science Policy
Space Science
title Exploring alternative solid waste management strategies for achieving policy goals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Jaunich,%20Megan%20K.&rft.date=2020-08-24&rft_id=info:doi/10.6084/m9.figshare.12848960&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_12848960%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true