Data set containing process execution log data with time sequence information for conference proceeding 2020 paper: Analyzing Process Concept Drifts Based on Sensor Event Streams During Runtime

A data set containing 37 instances of a manufacturing process. It describes the production of a part and the measurement of the produced parts dimensions as a time sequence

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stertz, Florian, Rinderle-Ma, Stefanie, Juergen Mangler
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Stertz, Florian
Rinderle-Ma, Stefanie
Juergen Mangler
description A data set containing 37 instances of a manufacturing process. It describes the production of a part and the measurement of the produced parts dimensions as a time sequence
doi_str_mv 10.6084/m9.figshare.12472634
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_12472634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_12472634</sourcerecordid><originalsourceid>FETCH-LOGICAL-d914-72fb86d8ca0702fc12a64db719dadf44179bd90d58e577619e32e564a064c97e3</originalsourceid><addsrcrecordid>eNo1kE1OwzAQhbNhgQo3YOELtNiOa8fsSlt-JCQQ7T5y7XFrqXGC7QDldtyMuLSrGc28983oFcUNwROOK3bbyIl127hTASaEMkF5yS6L34VKCkVISLc-Keed36IutBpiRPANuk-u9WjfbpHJyi-Xdii5BgbPRw9eA3LetqFRR93QZZCFcFwdQWAyk2KKUac6CHdo5tX-8JOnb6dL83aQdwktgrMponsVwaCBtwIfB-TyE3xCqxRANREt-pC9773Pj1wVF1btI1yf6qhYPyzX86fxy-vj83z2MjaSsLGgdlNxU2mFBaZWE6o4MxtBpFHGMkaE3BiJzbSCqRCcSCgpTDlTmDMtBZSjgv1jcwzaJai74BoVDjXBdQ64bmR9Drg-B1z-ASJve8o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Data set containing process execution log data with time sequence information for conference proceeding 2020 paper: Analyzing Process Concept Drifts Based on Sensor Event Streams During Runtime</title><source>DataCite</source><creator>Stertz, Florian ; Rinderle-Ma, Stefanie ; Juergen Mangler</creator><creatorcontrib>Stertz, Florian ; Rinderle-Ma, Stefanie ; Juergen Mangler</creatorcontrib><description>A data set containing 37 instances of a manufacturing process. It describes the production of a part and the measurement of the produced parts dimensions as a time sequence</description><identifier>DOI: 10.6084/m9.figshare.12472634</identifier><language>eng</language><publisher>figshare</publisher><subject>Applied Computer Science ; FOS: Economics and business ; Time-Series Analysis</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.12472634$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Stertz, Florian</creatorcontrib><creatorcontrib>Rinderle-Ma, Stefanie</creatorcontrib><creatorcontrib>Juergen Mangler</creatorcontrib><title>Data set containing process execution log data with time sequence information for conference proceeding 2020 paper: Analyzing Process Concept Drifts Based on Sensor Event Streams During Runtime</title><description>A data set containing 37 instances of a manufacturing process. It describes the production of a part and the measurement of the produced parts dimensions as a time sequence</description><subject>Applied Computer Science</subject><subject>FOS: Economics and business</subject><subject>Time-Series Analysis</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1kE1OwzAQhbNhgQo3YOELtNiOa8fsSlt-JCQQ7T5y7XFrqXGC7QDldtyMuLSrGc28983oFcUNwROOK3bbyIl127hTASaEMkF5yS6L34VKCkVISLc-Keed36IutBpiRPANuk-u9WjfbpHJyi-Xdii5BgbPRw9eA3LetqFRR93QZZCFcFwdQWAyk2KKUac6CHdo5tX-8JOnb6dL83aQdwktgrMponsVwaCBtwIfB-TyE3xCqxRANREt-pC9773Pj1wVF1btI1yf6qhYPyzX86fxy-vj83z2MjaSsLGgdlNxU2mFBaZWE6o4MxtBpFHGMkaE3BiJzbSCqRCcSCgpTDlTmDMtBZSjgv1jcwzaJai74BoVDjXBdQ64bmR9Drg-B1z-ASJve8o</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Stertz, Florian</creator><creator>Rinderle-Ma, Stefanie</creator><creator>Juergen Mangler</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20210427</creationdate><title>Data set containing process execution log data with time sequence information for conference proceeding 2020 paper: Analyzing Process Concept Drifts Based on Sensor Event Streams During Runtime</title><author>Stertz, Florian ; Rinderle-Ma, Stefanie ; Juergen Mangler</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d914-72fb86d8ca0702fc12a64db719dadf44179bd90d58e577619e32e564a064c97e3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied Computer Science</topic><topic>FOS: Economics and business</topic><topic>Time-Series Analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Stertz, Florian</creatorcontrib><creatorcontrib>Rinderle-Ma, Stefanie</creatorcontrib><creatorcontrib>Juergen Mangler</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stertz, Florian</au><au>Rinderle-Ma, Stefanie</au><au>Juergen Mangler</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Data set containing process execution log data with time sequence information for conference proceeding 2020 paper: Analyzing Process Concept Drifts Based on Sensor Event Streams During Runtime</title><date>2021-04-27</date><risdate>2021</risdate><abstract>A data set containing 37 instances of a manufacturing process. It describes the production of a part and the measurement of the produced parts dimensions as a time sequence</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.12472634</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.12472634
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_12472634
source DataCite
subjects Applied Computer Science
FOS: Economics and business
Time-Series Analysis
title Data set containing process execution log data with time sequence information for conference proceeding 2020 paper: Analyzing Process Concept Drifts Based on Sensor Event Streams During Runtime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Stertz,%20Florian&rft.date=2021-04-27&rft_id=info:doi/10.6084/m9.figshare.12472634&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_12472634%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true