A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property
This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of paramet...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Doganaksoy, Necip |
description | This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of parameters) that satisfy a set value of the log-likelihood. The proposed formulation allows straightforward implementation in end-user computing settings and it is particularly useful for the computation of intervals on noninvertible functions of model parameters. The main goal of the article is to expose this little-known property of LR confidence limits to the practitioner and research communities. Two case studies based on applications in product quality and reliability improvement are used for illustration. The first case study deals with interval estimation of the difference between the means of two lognormal populations. The second application concerns interval estimation for misclassification probabilities attributable to measurement error. Supplementary materials for this article are available online. |
doi_str_mv | 10.6084/m9.figshare.12071505 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_12071505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_12071505</sourcerecordid><originalsourceid>FETCH-LOGICAL-d915-9ee316734d5ae4cf4eaca140cfc84c6a48bec525e715b9120bc91b8d46e198c03</originalsourceid><addsrcrecordid>eNo1j9FKwzAYhXPjhUzfwIu8QGuyJl1zOYrTQdGhE7wLf5M_W7BpSloHe3s7dFcHzoHD9xHywFlesko8BpU7fxiPkDDnS7bikslb8rWmHz4MnXceLd3EFH46mHzsaXS08d_Y-WOMlr5fSlrH3nmLvUG67SdMJ-hG-jn6_kCBvsYTdnSX4oBpOt-RGzeveP-fC7LfPO3rl6x5e97W6yazistMIRa8XBXCSkBhnEAwwAUzzlTClCCqFo1cSpxxWzVjt0bxtrKiRK4qw4oFEX-3FiYwfkI9JB8gnTVn-uKtg9JXb331Ln4BPtJVeQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property</title><source>DataCite</source><creator>Doganaksoy, Necip</creator><creatorcontrib>Doganaksoy, Necip</creatorcontrib><description>This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of parameters) that satisfy a set value of the log-likelihood. The proposed formulation allows straightforward implementation in end-user computing settings and it is particularly useful for the computation of intervals on noninvertible functions of model parameters. The main goal of the article is to expose this little-known property of LR confidence limits to the practitioner and research communities. Two case studies based on applications in product quality and reliability improvement are used for illustration. The first case study deals with interval estimation of the difference between the means of two lognormal populations. The second application concerns interval estimation for misclassification probabilities attributable to measurement error. Supplementary materials for this article are available online.</description><identifier>DOI: 10.6084/m9.figshare.12071505</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Biological Sciences not elsewhere classified ; Biotechnology ; Cancer ; Chemical Sciences not elsewhere classified ; FOS: Biological sciences ; FOS: Chemical sciences ; FOS: Computer and information sciences ; FOS: Mathematics ; Information Systems not elsewhere classified ; Mathematical Sciences not elsewhere classified ; Medicine ; Pharmacology</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.12071505$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Doganaksoy, Necip</creatorcontrib><title>A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property</title><description>This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of parameters) that satisfy a set value of the log-likelihood. The proposed formulation allows straightforward implementation in end-user computing settings and it is particularly useful for the computation of intervals on noninvertible functions of model parameters. The main goal of the article is to expose this little-known property of LR confidence limits to the practitioner and research communities. Two case studies based on applications in product quality and reliability improvement are used for illustration. The first case study deals with interval estimation of the difference between the means of two lognormal populations. The second application concerns interval estimation for misclassification probabilities attributable to measurement error. Supplementary materials for this article are available online.</description><subject>Biological Sciences not elsewhere classified</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Chemical Sciences not elsewhere classified</subject><subject>FOS: Biological sciences</subject><subject>FOS: Chemical sciences</subject><subject>FOS: Computer and information sciences</subject><subject>FOS: Mathematics</subject><subject>Information Systems not elsewhere classified</subject><subject>Mathematical Sciences not elsewhere classified</subject><subject>Medicine</subject><subject>Pharmacology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1j9FKwzAYhXPjhUzfwIu8QGuyJl1zOYrTQdGhE7wLf5M_W7BpSloHe3s7dFcHzoHD9xHywFlesko8BpU7fxiPkDDnS7bikslb8rWmHz4MnXceLd3EFH46mHzsaXS08d_Y-WOMlr5fSlrH3nmLvUG67SdMJ-hG-jn6_kCBvsYTdnSX4oBpOt-RGzeveP-fC7LfPO3rl6x5e97W6yazistMIRa8XBXCSkBhnEAwwAUzzlTClCCqFo1cSpxxWzVjt0bxtrKiRK4qw4oFEX-3FiYwfkI9JB8gnTVn-uKtg9JXb331Ln4BPtJVeQ</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Doganaksoy, Necip</creator><general>Taylor & Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20200402</creationdate><title>A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property</title><author>Doganaksoy, Necip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d915-9ee316734d5ae4cf4eaca140cfc84c6a48bec525e715b9120bc91b8d46e198c03</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Sciences not elsewhere classified</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Chemical Sciences not elsewhere classified</topic><topic>FOS: Biological sciences</topic><topic>FOS: Chemical sciences</topic><topic>FOS: Computer and information sciences</topic><topic>FOS: Mathematics</topic><topic>Information Systems not elsewhere classified</topic><topic>Mathematical Sciences not elsewhere classified</topic><topic>Medicine</topic><topic>Pharmacology</topic><toplevel>online_resources</toplevel><creatorcontrib>Doganaksoy, Necip</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doganaksoy, Necip</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property</title><date>2020-04-02</date><risdate>2020</risdate><abstract>This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of parameters) that satisfy a set value of the log-likelihood. The proposed formulation allows straightforward implementation in end-user computing settings and it is particularly useful for the computation of intervals on noninvertible functions of model parameters. The main goal of the article is to expose this little-known property of LR confidence limits to the practitioner and research communities. Two case studies based on applications in product quality and reliability improvement are used for illustration. The first case study deals with interval estimation of the difference between the means of two lognormal populations. The second application concerns interval estimation for misclassification probabilities attributable to measurement error. Supplementary materials for this article are available online.</abstract><pub>Taylor & Francis</pub><doi>10.6084/m9.figshare.12071505</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.12071505 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_12071505 |
source | DataCite |
subjects | Biological Sciences not elsewhere classified Biotechnology Cancer Chemical Sciences not elsewhere classified FOS: Biological sciences FOS: Chemical sciences FOS: Computer and information sciences FOS: Mathematics Information Systems not elsewhere classified Mathematical Sciences not elsewhere classified Medicine Pharmacology |
title | A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Doganaksoy,%20Necip&rft.date=2020-04-02&rft_id=info:doi/10.6084/m9.figshare.12071505&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_12071505%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |