A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property

This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Doganaksoy, Necip
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Doganaksoy, Necip
description This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of parameters) that satisfy a set value of the log-likelihood. The proposed formulation allows straightforward implementation in end-user computing settings and it is particularly useful for the computation of intervals on noninvertible functions of model parameters. The main goal of the article is to expose this little-known property of LR confidence limits to the practitioner and research communities. Two case studies based on applications in product quality and reliability improvement are used for illustration. The first case study deals with interval estimation of the difference between the means of two lognormal populations. The second application concerns interval estimation for misclassification probabilities attributable to measurement error. Supplementary materials for this article are available online.
doi_str_mv 10.6084/m9.figshare.12071505
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_12071505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_12071505</sourcerecordid><originalsourceid>FETCH-LOGICAL-d915-9ee316734d5ae4cf4eaca140cfc84c6a48bec525e715b9120bc91b8d46e198c03</originalsourceid><addsrcrecordid>eNo1j9FKwzAYhXPjhUzfwIu8QGuyJl1zOYrTQdGhE7wLf5M_W7BpSloHe3s7dFcHzoHD9xHywFlesko8BpU7fxiPkDDnS7bikslb8rWmHz4MnXceLd3EFH46mHzsaXS08d_Y-WOMlr5fSlrH3nmLvUG67SdMJ-hG-jn6_kCBvsYTdnSX4oBpOt-RGzeveP-fC7LfPO3rl6x5e97W6yazistMIRa8XBXCSkBhnEAwwAUzzlTClCCqFo1cSpxxWzVjt0bxtrKiRK4qw4oFEX-3FiYwfkI9JB8gnTVn-uKtg9JXb331Ln4BPtJVeQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property</title><source>DataCite</source><creator>Doganaksoy, Necip</creator><creatorcontrib>Doganaksoy, Necip</creatorcontrib><description>This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of parameters) that satisfy a set value of the log-likelihood. The proposed formulation allows straightforward implementation in end-user computing settings and it is particularly useful for the computation of intervals on noninvertible functions of model parameters. The main goal of the article is to expose this little-known property of LR confidence limits to the practitioner and research communities. Two case studies based on applications in product quality and reliability improvement are used for illustration. The first case study deals with interval estimation of the difference between the means of two lognormal populations. The second application concerns interval estimation for misclassification probabilities attributable to measurement error. Supplementary materials for this article are available online.</description><identifier>DOI: 10.6084/m9.figshare.12071505</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Biological Sciences not elsewhere classified ; Biotechnology ; Cancer ; Chemical Sciences not elsewhere classified ; FOS: Biological sciences ; FOS: Chemical sciences ; FOS: Computer and information sciences ; FOS: Mathematics ; Information Systems not elsewhere classified ; Mathematical Sciences not elsewhere classified ; Medicine ; Pharmacology</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.12071505$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Doganaksoy, Necip</creatorcontrib><title>A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property</title><description>This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of parameters) that satisfy a set value of the log-likelihood. The proposed formulation allows straightforward implementation in end-user computing settings and it is particularly useful for the computation of intervals on noninvertible functions of model parameters. The main goal of the article is to expose this little-known property of LR confidence limits to the practitioner and research communities. Two case studies based on applications in product quality and reliability improvement are used for illustration. The first case study deals with interval estimation of the difference between the means of two lognormal populations. The second application concerns interval estimation for misclassification probabilities attributable to measurement error. Supplementary materials for this article are available online.</description><subject>Biological Sciences not elsewhere classified</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Chemical Sciences not elsewhere classified</subject><subject>FOS: Biological sciences</subject><subject>FOS: Chemical sciences</subject><subject>FOS: Computer and information sciences</subject><subject>FOS: Mathematics</subject><subject>Information Systems not elsewhere classified</subject><subject>Mathematical Sciences not elsewhere classified</subject><subject>Medicine</subject><subject>Pharmacology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1j9FKwzAYhXPjhUzfwIu8QGuyJl1zOYrTQdGhE7wLf5M_W7BpSloHe3s7dFcHzoHD9xHywFlesko8BpU7fxiPkDDnS7bikslb8rWmHz4MnXceLd3EFH46mHzsaXS08d_Y-WOMlr5fSlrH3nmLvUG67SdMJ-hG-jn6_kCBvsYTdnSX4oBpOt-RGzeveP-fC7LfPO3rl6x5e97W6yazistMIRa8XBXCSkBhnEAwwAUzzlTClCCqFo1cSpxxWzVjt0bxtrKiRK4qw4oFEX-3FiYwfkI9JB8gnTVn-uKtg9JXb331Ln4BPtJVeQ</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Doganaksoy, Necip</creator><general>Taylor &amp; Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20200402</creationdate><title>A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property</title><author>Doganaksoy, Necip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d915-9ee316734d5ae4cf4eaca140cfc84c6a48bec525e715b9120bc91b8d46e198c03</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Sciences not elsewhere classified</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Chemical Sciences not elsewhere classified</topic><topic>FOS: Biological sciences</topic><topic>FOS: Chemical sciences</topic><topic>FOS: Computer and information sciences</topic><topic>FOS: Mathematics</topic><topic>Information Systems not elsewhere classified</topic><topic>Mathematical Sciences not elsewhere classified</topic><topic>Medicine</topic><topic>Pharmacology</topic><toplevel>online_resources</toplevel><creatorcontrib>Doganaksoy, Necip</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doganaksoy, Necip</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property</title><date>2020-04-02</date><risdate>2020</risdate><abstract>This article describes a novel property of likelihood ratio (LR) confidence intervals which is subsequently used to formulate an alternative approach for their calculation. It is shown that LR confidence limits can be defined as the minimum and maximum values of a parameter (or a function of parameters) that satisfy a set value of the log-likelihood. The proposed formulation allows straightforward implementation in end-user computing settings and it is particularly useful for the computation of intervals on noninvertible functions of model parameters. The main goal of the article is to expose this little-known property of LR confidence limits to the practitioner and research communities. Two case studies based on applications in product quality and reliability improvement are used for illustration. The first case study deals with interval estimation of the difference between the means of two lognormal populations. The second application concerns interval estimation for misclassification probabilities attributable to measurement error. Supplementary materials for this article are available online.</abstract><pub>Taylor &amp; Francis</pub><doi>10.6084/m9.figshare.12071505</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.12071505
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_12071505
source DataCite
subjects Biological Sciences not elsewhere classified
Biotechnology
Cancer
Chemical Sciences not elsewhere classified
FOS: Biological sciences
FOS: Chemical sciences
FOS: Computer and information sciences
FOS: Mathematics
Information Systems not elsewhere classified
Mathematical Sciences not elsewhere classified
Medicine
Pharmacology
title A Simplified Formulation of Likelihood Ratio Confidence Intervals Using a Novel Property
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Doganaksoy,%20Necip&rft.date=2020-04-02&rft_id=info:doi/10.6084/m9.figshare.12071505&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_12071505%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true