High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms

The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: He, Bing, Chi, Shuting, Ye, Anjiang, Mi, Penghui, Zhang, Liwen, Pu, Bowei, Zou, Zheyi, Ran, Yunbing, Zhao, Qian, Wang, Da, Zhang, Wengqing, Zhao, Jingtai, Adams, Stefan, Avdeev, Maxim, Shi, Siqi
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator He, Bing
Chi, Shuting
Ye, Anjiang
Mi, Penghui
Zhang, Liwen
Pu, Bowei
Zou, Zheyi
Ran, Yunbing
Zhao, Qian
Wang, Da
Zhang, Wengqing
Zhao, Jingtai
Adams, Stefan
Avdeev, Maxim
Shi, Siqi
description The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical geometric analysis and bond valence method. A chain of images is then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community.
doi_str_mv 10.6084/m9.figshare.12011412
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_12011412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_12011412</sourcerecordid><originalsourceid>FETCH-LOGICAL-d912-82e667bc9c91c1ad38148e4ae13c211c29cba337cad8ef92c036b0f85b0a3d583</originalsourceid><addsrcrecordid>eNo10L1ugzAUBWCWDlXaN-jgFyDxDyH2GEVpiRSpkcKOLtcGLBmMLs6Qt-9vlnOWozN8WfYm-LrkutiMZt35fhmA3FpILkQh5HOWKt8PeT1QvPXDfEvsiuTc5KeeXQKkLtLIvoNdY_CWHYPDRDHck1vYIY6t_11W3hEQDh4hsFOc8ppgWuZIiV3IWY_Jx4ntQx_Jp2FcXrKnDsLiXv97ldXvx_pQ5efPj9Nhf86tETLX0pXlrkWDRqAAq7QotCvACYVSCJQGW1Bqh2C164xErsqWd3rbclB2q9UqK_5uLSRAn1wzkx-B7o3gzY9JM5rmYdI8TNQXcb5grg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms</title><source>DataCite</source><creator>He, Bing ; Chi, Shuting ; Ye, Anjiang ; Mi, Penghui ; Zhang, Liwen ; Pu, Bowei ; Zou, Zheyi ; Ran, Yunbing ; Zhao, Qian ; Wang, Da ; Zhang, Wengqing ; Zhao, Jingtai ; Adams, Stefan ; Avdeev, Maxim ; Shi, Siqi</creator><creatorcontrib>He, Bing ; Chi, Shuting ; Ye, Anjiang ; Mi, Penghui ; Zhang, Liwen ; Pu, Bowei ; Zou, Zheyi ; Ran, Yunbing ; Zhao, Qian ; Wang, Da ; Zhang, Wengqing ; Zhao, Jingtai ; Adams, Stefan ; Avdeev, Maxim ; Shi, Siqi</creatorcontrib><description>The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical geometric analysis and bond valence method. A chain of images is then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community.</description><identifier>DOI: 10.6084/m9.figshare.12011412</identifier><language>eng</language><publisher>figshare</publisher><subject>Inorganic materials (incl. nanomaterials) ; Macromolecular materials ; Physical properties of materials ; Structure and dynamics of materials</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.12011412$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Chi, Shuting</creatorcontrib><creatorcontrib>Ye, Anjiang</creatorcontrib><creatorcontrib>Mi, Penghui</creatorcontrib><creatorcontrib>Zhang, Liwen</creatorcontrib><creatorcontrib>Pu, Bowei</creatorcontrib><creatorcontrib>Zou, Zheyi</creatorcontrib><creatorcontrib>Ran, Yunbing</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Zhang, Wengqing</creatorcontrib><creatorcontrib>Zhao, Jingtai</creatorcontrib><creatorcontrib>Adams, Stefan</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Shi, Siqi</creatorcontrib><title>High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms</title><description>The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical geometric analysis and bond valence method. A chain of images is then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community.</description><subject>Inorganic materials (incl. nanomaterials)</subject><subject>Macromolecular materials</subject><subject>Physical properties of materials</subject><subject>Structure and dynamics of materials</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo10L1ugzAUBWCWDlXaN-jgFyDxDyH2GEVpiRSpkcKOLtcGLBmMLs6Qt-9vlnOWozN8WfYm-LrkutiMZt35fhmA3FpILkQh5HOWKt8PeT1QvPXDfEvsiuTc5KeeXQKkLtLIvoNdY_CWHYPDRDHck1vYIY6t_11W3hEQDh4hsFOc8ppgWuZIiV3IWY_Jx4ntQx_Jp2FcXrKnDsLiXv97ldXvx_pQ5efPj9Nhf86tETLX0pXlrkWDRqAAq7QotCvACYVSCJQGW1Bqh2C164xErsqWd3rbclB2q9UqK_5uLSRAn1wzkx-B7o3gzY9JM5rmYdI8TNQXcb5grg</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>He, Bing</creator><creator>Chi, Shuting</creator><creator>Ye, Anjiang</creator><creator>Mi, Penghui</creator><creator>Zhang, Liwen</creator><creator>Pu, Bowei</creator><creator>Zou, Zheyi</creator><creator>Ran, Yunbing</creator><creator>Zhao, Qian</creator><creator>Wang, Da</creator><creator>Zhang, Wengqing</creator><creator>Zhao, Jingtai</creator><creator>Adams, Stefan</creator><creator>Avdeev, Maxim</creator><creator>Shi, Siqi</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20200320</creationdate><title>High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms</title><author>He, Bing ; Chi, Shuting ; Ye, Anjiang ; Mi, Penghui ; Zhang, Liwen ; Pu, Bowei ; Zou, Zheyi ; Ran, Yunbing ; Zhao, Qian ; Wang, Da ; Zhang, Wengqing ; Zhao, Jingtai ; Adams, Stefan ; Avdeev, Maxim ; Shi, Siqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d912-82e667bc9c91c1ad38148e4ae13c211c29cba337cad8ef92c036b0f85b0a3d583</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Inorganic materials (incl. nanomaterials)</topic><topic>Macromolecular materials</topic><topic>Physical properties of materials</topic><topic>Structure and dynamics of materials</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Chi, Shuting</creatorcontrib><creatorcontrib>Ye, Anjiang</creatorcontrib><creatorcontrib>Mi, Penghui</creatorcontrib><creatorcontrib>Zhang, Liwen</creatorcontrib><creatorcontrib>Pu, Bowei</creatorcontrib><creatorcontrib>Zou, Zheyi</creatorcontrib><creatorcontrib>Ran, Yunbing</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Zhang, Wengqing</creatorcontrib><creatorcontrib>Zhao, Jingtai</creatorcontrib><creatorcontrib>Adams, Stefan</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Shi, Siqi</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Bing</au><au>Chi, Shuting</au><au>Ye, Anjiang</au><au>Mi, Penghui</au><au>Zhang, Liwen</au><au>Pu, Bowei</au><au>Zou, Zheyi</au><au>Ran, Yunbing</au><au>Zhao, Qian</au><au>Wang, Da</au><au>Zhang, Wengqing</au><au>Zhao, Jingtai</au><au>Adams, Stefan</au><au>Avdeev, Maxim</au><au>Shi, Siqi</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms</title><date>2020-03-20</date><risdate>2020</risdate><abstract>The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical geometric analysis and bond valence method. A chain of images is then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.12011412</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.12011412
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_12011412
source DataCite
subjects Inorganic materials (incl. nanomaterials)
Macromolecular materials
Physical properties of materials
Structure and dynamics of materials
title High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A42%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=He,%20Bing&rft.date=2020-03-20&rft_id=info:doi/10.6084/m9.figshare.12011412&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_12011412%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true