High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms
The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the firs...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | He, Bing Chi, Shuting Ye, Anjiang Mi, Penghui Zhang, Liwen Pu, Bowei Zou, Zheyi Ran, Yunbing Zhao, Qian Wang, Da Zhang, Wengqing Zhao, Jingtai Adams, Stefan Avdeev, Maxim Shi, Siqi |
description | The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical geometric analysis and bond valence method. A chain of images is then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community. |
doi_str_mv | 10.6084/m9.figshare.12011412 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_12011412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_12011412</sourcerecordid><originalsourceid>FETCH-LOGICAL-d912-82e667bc9c91c1ad38148e4ae13c211c29cba337cad8ef92c036b0f85b0a3d583</originalsourceid><addsrcrecordid>eNo10L1ugzAUBWCWDlXaN-jgFyDxDyH2GEVpiRSpkcKOLtcGLBmMLs6Qt-9vlnOWozN8WfYm-LrkutiMZt35fhmA3FpILkQh5HOWKt8PeT1QvPXDfEvsiuTc5KeeXQKkLtLIvoNdY_CWHYPDRDHck1vYIY6t_11W3hEQDh4hsFOc8ppgWuZIiV3IWY_Jx4ntQx_Jp2FcXrKnDsLiXv97ldXvx_pQ5efPj9Nhf86tETLX0pXlrkWDRqAAq7QotCvACYVSCJQGW1Bqh2C164xErsqWd3rbclB2q9UqK_5uLSRAn1wzkx-B7o3gzY9JM5rmYdI8TNQXcb5grg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms</title><source>DataCite</source><creator>He, Bing ; Chi, Shuting ; Ye, Anjiang ; Mi, Penghui ; Zhang, Liwen ; Pu, Bowei ; Zou, Zheyi ; Ran, Yunbing ; Zhao, Qian ; Wang, Da ; Zhang, Wengqing ; Zhao, Jingtai ; Adams, Stefan ; Avdeev, Maxim ; Shi, Siqi</creator><creatorcontrib>He, Bing ; Chi, Shuting ; Ye, Anjiang ; Mi, Penghui ; Zhang, Liwen ; Pu, Bowei ; Zou, Zheyi ; Ran, Yunbing ; Zhao, Qian ; Wang, Da ; Zhang, Wengqing ; Zhao, Jingtai ; Adams, Stefan ; Avdeev, Maxim ; Shi, Siqi</creatorcontrib><description>The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical geometric analysis and bond valence method. A chain of images is then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community.</description><identifier>DOI: 10.6084/m9.figshare.12011412</identifier><language>eng</language><publisher>figshare</publisher><subject>Inorganic materials (incl. nanomaterials) ; Macromolecular materials ; Physical properties of materials ; Structure and dynamics of materials</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.12011412$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Chi, Shuting</creatorcontrib><creatorcontrib>Ye, Anjiang</creatorcontrib><creatorcontrib>Mi, Penghui</creatorcontrib><creatorcontrib>Zhang, Liwen</creatorcontrib><creatorcontrib>Pu, Bowei</creatorcontrib><creatorcontrib>Zou, Zheyi</creatorcontrib><creatorcontrib>Ran, Yunbing</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Zhang, Wengqing</creatorcontrib><creatorcontrib>Zhao, Jingtai</creatorcontrib><creatorcontrib>Adams, Stefan</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Shi, Siqi</creatorcontrib><title>High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms</title><description>The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical geometric analysis and bond valence method. A chain of images is then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community.</description><subject>Inorganic materials (incl. nanomaterials)</subject><subject>Macromolecular materials</subject><subject>Physical properties of materials</subject><subject>Structure and dynamics of materials</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo10L1ugzAUBWCWDlXaN-jgFyDxDyH2GEVpiRSpkcKOLtcGLBmMLs6Qt-9vlnOWozN8WfYm-LrkutiMZt35fhmA3FpILkQh5HOWKt8PeT1QvPXDfEvsiuTc5KeeXQKkLtLIvoNdY_CWHYPDRDHck1vYIY6t_11W3hEQDh4hsFOc8ppgWuZIiV3IWY_Jx4ntQx_Jp2FcXrKnDsLiXv97ldXvx_pQ5efPj9Nhf86tETLX0pXlrkWDRqAAq7QotCvACYVSCJQGW1Bqh2C164xErsqWd3rbclB2q9UqK_5uLSRAn1wzkx-B7o3gzY9JM5rmYdI8TNQXcb5grg</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>He, Bing</creator><creator>Chi, Shuting</creator><creator>Ye, Anjiang</creator><creator>Mi, Penghui</creator><creator>Zhang, Liwen</creator><creator>Pu, Bowei</creator><creator>Zou, Zheyi</creator><creator>Ran, Yunbing</creator><creator>Zhao, Qian</creator><creator>Wang, Da</creator><creator>Zhang, Wengqing</creator><creator>Zhao, Jingtai</creator><creator>Adams, Stefan</creator><creator>Avdeev, Maxim</creator><creator>Shi, Siqi</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20200320</creationdate><title>High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms</title><author>He, Bing ; Chi, Shuting ; Ye, Anjiang ; Mi, Penghui ; Zhang, Liwen ; Pu, Bowei ; Zou, Zheyi ; Ran, Yunbing ; Zhao, Qian ; Wang, Da ; Zhang, Wengqing ; Zhao, Jingtai ; Adams, Stefan ; Avdeev, Maxim ; Shi, Siqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d912-82e667bc9c91c1ad38148e4ae13c211c29cba337cad8ef92c036b0f85b0a3d583</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Inorganic materials (incl. nanomaterials)</topic><topic>Macromolecular materials</topic><topic>Physical properties of materials</topic><topic>Structure and dynamics of materials</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Chi, Shuting</creatorcontrib><creatorcontrib>Ye, Anjiang</creatorcontrib><creatorcontrib>Mi, Penghui</creatorcontrib><creatorcontrib>Zhang, Liwen</creatorcontrib><creatorcontrib>Pu, Bowei</creatorcontrib><creatorcontrib>Zou, Zheyi</creatorcontrib><creatorcontrib>Ran, Yunbing</creatorcontrib><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Wang, Da</creatorcontrib><creatorcontrib>Zhang, Wengqing</creatorcontrib><creatorcontrib>Zhao, Jingtai</creatorcontrib><creatorcontrib>Adams, Stefan</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Shi, Siqi</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Bing</au><au>Chi, Shuting</au><au>Ye, Anjiang</au><au>Mi, Penghui</au><au>Zhang, Liwen</au><au>Pu, Bowei</au><au>Zou, Zheyi</au><au>Ran, Yunbing</au><au>Zhao, Qian</au><au>Wang, Da</au><au>Zhang, Wengqing</au><au>Zhao, Jingtai</au><au>Adams, Stefan</au><au>Avdeev, Maxim</au><au>Shi, Siqi</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms</title><date>2020-03-20</date><risdate>2020</risdate><abstract>The combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical geometric analysis and bond valence method. A chain of images is then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.12011412</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.12011412 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_12011412 |
source | DataCite |
subjects | Inorganic materials (incl. nanomaterials) Macromolecular materials Physical properties of materials Structure and dynamics of materials |
title | High-Throughput Screening Platform for Solid Electrolytes Combining Hierarchical Ion-Transport Prediction Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A42%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=He,%20Bing&rft.date=2020-03-20&rft_id=info:doi/10.6084/m9.figshare.12011412&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_12011412%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |