Additional file 1 of SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging
Additional file 1. Names of the genotypes used for the study.
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Tanuj Misra Arora, Alka Sudeep Marwaha Viswanathan Chinnusamy Atmakuri Ramakrishna Rao Jain, Rajni Sahoo, Rabi Narayan Mrinmoy Ray Kumar, Sudhir Dhandapani Raju Jha, Ranjeet Ranjan Nigam, Aditya Goel, Swati |
description | Additional file 1. Names of the genotypes used for the study. |
doi_str_mv | 10.6084/m9.figshare.12004782 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_12004782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_12004782</sourcerecordid><originalsourceid>FETCH-LOGICAL-d912-59761a9e9e19a0267bc19264f7ac5d9a5216124fae48bbfa71da3819477377153</originalsourceid><addsrcrecordid>eNo1kE1OwzAQhbNhgQo3YDEXSIkTJ46XVcWfVMGC7qNpPE6sOnbkOFRwK25IA3T1pNHoe09fktyxbF1lNb8f5Fqbbuox0JrlWcZFnV8n3xulTDTeoQVtLAEDr-F9NEd6p-6VYoqgiEawhMEZ1wGOY_DY9jBHY83XciLXekUhVfSb4CiefDjCycQeej-HzuI0gfYBpoUME3UDuYhLMaBT0PrZxQVlHJx6wgijRRdBBz_Ah5nm8zwzYHd-uUmuNNqJbv9zlewfH_bb53T39vSy3exSJVmellJUDCVJYhKzvBKHlsm84lpgWyqJZc4qlnONxOvDQaNgCouaSS5EIQQri1XC_7AKI7YmUjOG84Lw2bCsWYQ2g2wuQpuL0OIH59J2Pw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Additional file 1 of SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging</title><source>DataCite</source><creator>Tanuj Misra ; Arora, Alka ; Sudeep Marwaha ; Viswanathan Chinnusamy ; Atmakuri Ramakrishna Rao ; Jain, Rajni ; Sahoo, Rabi Narayan ; Mrinmoy Ray ; Kumar, Sudhir ; Dhandapani Raju ; Jha, Ranjeet Ranjan ; Nigam, Aditya ; Goel, Swati</creator><creatorcontrib>Tanuj Misra ; Arora, Alka ; Sudeep Marwaha ; Viswanathan Chinnusamy ; Atmakuri Ramakrishna Rao ; Jain, Rajni ; Sahoo, Rabi Narayan ; Mrinmoy Ray ; Kumar, Sudhir ; Dhandapani Raju ; Jha, Ranjeet Ranjan ; Nigam, Aditya ; Goel, Swati</creatorcontrib><description>Additional file 1. Names of the genotypes used for the study.</description><identifier>DOI: 10.6084/m9.figshare.12004782</identifier><language>eng</language><publisher>figshare</publisher><subject>Artificial Intelligence and Image Processing ; FOS: Biological sciences ; FOS: Computer and information sciences ; Plant Biology</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.12004782$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tanuj Misra</creatorcontrib><creatorcontrib>Arora, Alka</creatorcontrib><creatorcontrib>Sudeep Marwaha</creatorcontrib><creatorcontrib>Viswanathan Chinnusamy</creatorcontrib><creatorcontrib>Atmakuri Ramakrishna Rao</creatorcontrib><creatorcontrib>Jain, Rajni</creatorcontrib><creatorcontrib>Sahoo, Rabi Narayan</creatorcontrib><creatorcontrib>Mrinmoy Ray</creatorcontrib><creatorcontrib>Kumar, Sudhir</creatorcontrib><creatorcontrib>Dhandapani Raju</creatorcontrib><creatorcontrib>Jha, Ranjeet Ranjan</creatorcontrib><creatorcontrib>Nigam, Aditya</creatorcontrib><creatorcontrib>Goel, Swati</creatorcontrib><title>Additional file 1 of SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging</title><description>Additional file 1. Names of the genotypes used for the study.</description><subject>Artificial Intelligence and Image Processing</subject><subject>FOS: Biological sciences</subject><subject>FOS: Computer and information sciences</subject><subject>Plant Biology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1kE1OwzAQhbNhgQo3YDEXSIkTJ46XVcWfVMGC7qNpPE6sOnbkOFRwK25IA3T1pNHoe09fktyxbF1lNb8f5Fqbbuox0JrlWcZFnV8n3xulTDTeoQVtLAEDr-F9NEd6p-6VYoqgiEawhMEZ1wGOY_DY9jBHY83XciLXekUhVfSb4CiefDjCycQeej-HzuI0gfYBpoUME3UDuYhLMaBT0PrZxQVlHJx6wgijRRdBBz_Ah5nm8zwzYHd-uUmuNNqJbv9zlewfH_bb53T39vSy3exSJVmellJUDCVJYhKzvBKHlsm84lpgWyqJZc4qlnONxOvDQaNgCouaSS5EIQQri1XC_7AKI7YmUjOG84Lw2bCsWYQ2g2wuQpuL0OIH59J2Pw</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Tanuj Misra</creator><creator>Arora, Alka</creator><creator>Sudeep Marwaha</creator><creator>Viswanathan Chinnusamy</creator><creator>Atmakuri Ramakrishna Rao</creator><creator>Jain, Rajni</creator><creator>Sahoo, Rabi Narayan</creator><creator>Mrinmoy Ray</creator><creator>Kumar, Sudhir</creator><creator>Dhandapani Raju</creator><creator>Jha, Ranjeet Ranjan</creator><creator>Nigam, Aditya</creator><creator>Goel, Swati</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20200319</creationdate><title>Additional file 1 of SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging</title><author>Tanuj Misra ; Arora, Alka ; Sudeep Marwaha ; Viswanathan Chinnusamy ; Atmakuri Ramakrishna Rao ; Jain, Rajni ; Sahoo, Rabi Narayan ; Mrinmoy Ray ; Kumar, Sudhir ; Dhandapani Raju ; Jha, Ranjeet Ranjan ; Nigam, Aditya ; Goel, Swati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d912-59761a9e9e19a0267bc19264f7ac5d9a5216124fae48bbfa71da3819477377153</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence and Image Processing</topic><topic>FOS: Biological sciences</topic><topic>FOS: Computer and information sciences</topic><topic>Plant Biology</topic><toplevel>online_resources</toplevel><creatorcontrib>Tanuj Misra</creatorcontrib><creatorcontrib>Arora, Alka</creatorcontrib><creatorcontrib>Sudeep Marwaha</creatorcontrib><creatorcontrib>Viswanathan Chinnusamy</creatorcontrib><creatorcontrib>Atmakuri Ramakrishna Rao</creatorcontrib><creatorcontrib>Jain, Rajni</creatorcontrib><creatorcontrib>Sahoo, Rabi Narayan</creatorcontrib><creatorcontrib>Mrinmoy Ray</creatorcontrib><creatorcontrib>Kumar, Sudhir</creatorcontrib><creatorcontrib>Dhandapani Raju</creatorcontrib><creatorcontrib>Jha, Ranjeet Ranjan</creatorcontrib><creatorcontrib>Nigam, Aditya</creatorcontrib><creatorcontrib>Goel, Swati</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tanuj Misra</au><au>Arora, Alka</au><au>Sudeep Marwaha</au><au>Viswanathan Chinnusamy</au><au>Atmakuri Ramakrishna Rao</au><au>Jain, Rajni</au><au>Sahoo, Rabi Narayan</au><au>Mrinmoy Ray</au><au>Kumar, Sudhir</au><au>Dhandapani Raju</au><au>Jha, Ranjeet Ranjan</au><au>Nigam, Aditya</au><au>Goel, Swati</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Additional file 1 of SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging</title><date>2020-03-19</date><risdate>2020</risdate><abstract>Additional file 1. Names of the genotypes used for the study.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.12004782</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.12004782 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_12004782 |
source | DataCite |
subjects | Artificial Intelligence and Image Processing FOS: Biological sciences FOS: Computer and information sciences Plant Biology |
title | Additional file 1 of SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Tanuj%20Misra&rft.date=2020-03-19&rft_id=info:doi/10.6084/m9.figshare.12004782&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_12004782%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |