Monitoring the understory in eucalyptus plantations using airborne laser scanning
ABSTRACT In eucalyptus plantations, the presence of understory increases the risk of fires, acts as an obstacle to forest operations, and leads to yield losses due to competition. The objective of this study was to develop an approach to discriminate the presence or absence of understory in eucalypt...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Melo, Alessandra Morais Reis, Cristiano Rodrigues Martins, Bruno Ferraz Penido, Tamires Mousslech Andrade Rodriguez, Luiz Carlos Estraviz Gorgens, Eric Bastos |
description | ABSTRACT In eucalyptus plantations, the presence of understory increases the risk of fires, acts as an obstacle to forest operations, and leads to yield losses due to competition. The objective of this study was to develop an approach to discriminate the presence or absence of understory in eucalyptus plantations based on airborne laser scanning surveys. The bimodal canopy height profile was modeled by two Weibull density functions: one to model the canopy, and other to model the understory. The parameters used as predictor in the logistic model successfully discriminated the presence or absence of understory. The logistic model composed by ℽ canopy, ℽ understory, and ℽ understory showed higher values of accuracy (0.96) and kappa (0.92), which means an adequate classification of presence of understory and absence of understory. Weibull parameters could be used as input in the logistic regression to effectively identify the presence and absence of understory in eucalyptus plantation. |
doi_str_mv | 10.6084/m9.figshare.11997426 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_11997426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_11997426</sourcerecordid><originalsourceid>FETCH-LOGICAL-d916-20a0a441673cd09953e597a334420387eb42050b7a2d08ce007ea619f393052b3</originalsourceid><addsrcrecordid>eNo1j71qwzAURrV0KEnfoINewM6VJVvWWEL_IKUUsotr-zoR2LKR5MFvX4c204HDxweHsWcBeQW1Oowm790lXjFQLoQxWhXVI_v5mrxLU3D-wtOV-OI7CnETK3ee09LisM5piXwe0CdMbvKRL_E2RxeaKXjiA0YKPLbo_eb37KHHIdLTP3fs_PZ6Pn5kp-_3z-PLKeuMqLICEFApUWnZdmBMKak0GqVUqgBZa2o2ltBoLDqoWwLQhJUwvTQSyqKRO6b-bjtM2LpEdg5uxLBaAfYWbEdj78H2Hix_ATazUrQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Monitoring the understory in eucalyptus plantations using airborne laser scanning</title><source>DataCite</source><creator>Melo, Alessandra Morais ; Reis, Cristiano Rodrigues ; Martins, Bruno Ferraz ; Penido, Tamires Mousslech Andrade ; Rodriguez, Luiz Carlos Estraviz ; Gorgens, Eric Bastos</creator><creatorcontrib>Melo, Alessandra Morais ; Reis, Cristiano Rodrigues ; Martins, Bruno Ferraz ; Penido, Tamires Mousslech Andrade ; Rodriguez, Luiz Carlos Estraviz ; Gorgens, Eric Bastos</creatorcontrib><description>ABSTRACT In eucalyptus plantations, the presence of understory increases the risk of fires, acts as an obstacle to forest operations, and leads to yield losses due to competition. The objective of this study was to develop an approach to discriminate the presence or absence of understory in eucalyptus plantations based on airborne laser scanning surveys. The bimodal canopy height profile was modeled by two Weibull density functions: one to model the canopy, and other to model the understory. The parameters used as predictor in the logistic model successfully discriminated the presence or absence of understory. The logistic model composed by ℽ canopy, ℽ understory, and ℽ understory showed higher values of accuracy (0.96) and kappa (0.92), which means an adequate classification of presence of understory and absence of understory. Weibull parameters could be used as input in the logistic regression to effectively identify the presence and absence of understory in eucalyptus plantation.</description><identifier>DOI: 10.6084/m9.figshare.11997426</identifier><language>eng</language><publisher>SciELO journals</publisher><subject>Agricultural Biotechnology not elsewhere classified ; FOS: Agricultural biotechnology</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,1890</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.11997426$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Melo, Alessandra Morais</creatorcontrib><creatorcontrib>Reis, Cristiano Rodrigues</creatorcontrib><creatorcontrib>Martins, Bruno Ferraz</creatorcontrib><creatorcontrib>Penido, Tamires Mousslech Andrade</creatorcontrib><creatorcontrib>Rodriguez, Luiz Carlos Estraviz</creatorcontrib><creatorcontrib>Gorgens, Eric Bastos</creatorcontrib><title>Monitoring the understory in eucalyptus plantations using airborne laser scanning</title><description>ABSTRACT In eucalyptus plantations, the presence of understory increases the risk of fires, acts as an obstacle to forest operations, and leads to yield losses due to competition. The objective of this study was to develop an approach to discriminate the presence or absence of understory in eucalyptus plantations based on airborne laser scanning surveys. The bimodal canopy height profile was modeled by two Weibull density functions: one to model the canopy, and other to model the understory. The parameters used as predictor in the logistic model successfully discriminated the presence or absence of understory. The logistic model composed by ℽ canopy, ℽ understory, and ℽ understory showed higher values of accuracy (0.96) and kappa (0.92), which means an adequate classification of presence of understory and absence of understory. Weibull parameters could be used as input in the logistic regression to effectively identify the presence and absence of understory in eucalyptus plantation.</description><subject>Agricultural Biotechnology not elsewhere classified</subject><subject>FOS: Agricultural biotechnology</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo1j71qwzAURrV0KEnfoINewM6VJVvWWEL_IKUUsotr-zoR2LKR5MFvX4c204HDxweHsWcBeQW1Oowm790lXjFQLoQxWhXVI_v5mrxLU3D-wtOV-OI7CnETK3ee09LisM5piXwe0CdMbvKRL_E2RxeaKXjiA0YKPLbo_eb37KHHIdLTP3fs_PZ6Pn5kp-_3z-PLKeuMqLICEFApUWnZdmBMKak0GqVUqgBZa2o2ltBoLDqoWwLQhJUwvTQSyqKRO6b-bjtM2LpEdg5uxLBaAfYWbEdj78H2Hix_ATazUrQ</recordid><startdate>20200318</startdate><enddate>20200318</enddate><creator>Melo, Alessandra Morais</creator><creator>Reis, Cristiano Rodrigues</creator><creator>Martins, Bruno Ferraz</creator><creator>Penido, Tamires Mousslech Andrade</creator><creator>Rodriguez, Luiz Carlos Estraviz</creator><creator>Gorgens, Eric Bastos</creator><general>SciELO journals</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20200318</creationdate><title>Monitoring the understory in eucalyptus plantations using airborne laser scanning</title><author>Melo, Alessandra Morais ; Reis, Cristiano Rodrigues ; Martins, Bruno Ferraz ; Penido, Tamires Mousslech Andrade ; Rodriguez, Luiz Carlos Estraviz ; Gorgens, Eric Bastos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d916-20a0a441673cd09953e597a334420387eb42050b7a2d08ce007ea619f393052b3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural Biotechnology not elsewhere classified</topic><topic>FOS: Agricultural biotechnology</topic><toplevel>online_resources</toplevel><creatorcontrib>Melo, Alessandra Morais</creatorcontrib><creatorcontrib>Reis, Cristiano Rodrigues</creatorcontrib><creatorcontrib>Martins, Bruno Ferraz</creatorcontrib><creatorcontrib>Penido, Tamires Mousslech Andrade</creatorcontrib><creatorcontrib>Rodriguez, Luiz Carlos Estraviz</creatorcontrib><creatorcontrib>Gorgens, Eric Bastos</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Melo, Alessandra Morais</au><au>Reis, Cristiano Rodrigues</au><au>Martins, Bruno Ferraz</au><au>Penido, Tamires Mousslech Andrade</au><au>Rodriguez, Luiz Carlos Estraviz</au><au>Gorgens, Eric Bastos</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Monitoring the understory in eucalyptus plantations using airborne laser scanning</title><date>2020-03-18</date><risdate>2020</risdate><abstract>ABSTRACT In eucalyptus plantations, the presence of understory increases the risk of fires, acts as an obstacle to forest operations, and leads to yield losses due to competition. The objective of this study was to develop an approach to discriminate the presence or absence of understory in eucalyptus plantations based on airborne laser scanning surveys. The bimodal canopy height profile was modeled by two Weibull density functions: one to model the canopy, and other to model the understory. The parameters used as predictor in the logistic model successfully discriminated the presence or absence of understory. The logistic model composed by ℽ canopy, ℽ understory, and ℽ understory showed higher values of accuracy (0.96) and kappa (0.92), which means an adequate classification of presence of understory and absence of understory. Weibull parameters could be used as input in the logistic regression to effectively identify the presence and absence of understory in eucalyptus plantation.</abstract><pub>SciELO journals</pub><doi>10.6084/m9.figshare.11997426</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.11997426 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_11997426 |
source | DataCite |
subjects | Agricultural Biotechnology not elsewhere classified FOS: Agricultural biotechnology |
title | Monitoring the understory in eucalyptus plantations using airborne laser scanning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Melo,%20Alessandra%20Morais&rft.date=2020-03-18&rft_id=info:doi/10.6084/m9.figshare.11997426&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_11997426%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |