Automated and semi-automated map georeferencing

Historical maps contain a wealth of information not generally available, but they must be referenced to well-known coordinate systems for maximum use in spatial analysis. Existing georeferencing tools are essentially manual, requiring considerable data entry, much panning and zooming, and precise on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Burt, James E., White, Jeremy, Allord, Gregory, Then, Kenneth M., Zhu, A-Xing
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Burt, James E.
White, Jeremy
Allord, Gregory
Then, Kenneth M.
Zhu, A-Xing
description Historical maps contain a wealth of information not generally available, but they must be referenced to well-known coordinate systems for maximum use in spatial analysis. Existing georeferencing tools are essentially manual, requiring considerable data entry, much panning and zooming, and precise on-screen digitizing. Here we present alternative approaches based on pattern-matching and spatial computing intended to overcome the inefficiencies of standard tools. We also describe and make available two computer programs implementing the methods discussed. The first, designed for large-scale quadrangles, locates map boundaries, finds ground control points, and produces georeferenced images without operator assistance. Experiments show that quadrangle georeferencing can be reliably automated (88% success rate in our tests). A second program, developed for general maps at any scale, uses self-learning and other approaches to overcome most of the manual aspects of georeferencing. Both programs find control points with single-pixel accuracy, yield transform errors on the order of map linewidth, and can produce warped or unwarped images as desired.
doi_str_mv 10.6084/m9.figshare.10033616
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_10033616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_10033616</sourcerecordid><originalsourceid>FETCH-LOGICAL-d916-cb21629d4f970441750df3e787297eb8bc5953a70dc9e7cd45a9bb4fbf3785333</originalsourceid><addsrcrecordid>eNo9z71qwzAUhmEtGUrSO-jgG7AjWX8-YwjpDwS6ZBdH0pErqJwgO0PvPoQ2nT54hw8exl4E7wwf1LZAl_I4f2GlTnAupRHmiW131-VccKHY4BSbmUpu8T8VvDQjnSslqjSFPI0btkr4PdPz367Z6fVw2r-3x8-3j_3u2EYQpg2-F6aHqBJYrpSwmsckyQ62B0t-8EGDlmh5DEA2RKURvFfJJ2kHLaVcM_V7G3HBkBdyl5oL1h8nuLtzXAH34LgHR94Am2JGIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Automated and semi-automated map georeferencing</title><source>DataCite</source><creator>Burt, James E. ; White, Jeremy ; Allord, Gregory ; Then, Kenneth M. ; Zhu, A-Xing</creator><creatorcontrib>Burt, James E. ; White, Jeremy ; Allord, Gregory ; Then, Kenneth M. ; Zhu, A-Xing</creatorcontrib><description>Historical maps contain a wealth of information not generally available, but they must be referenced to well-known coordinate systems for maximum use in spatial analysis. Existing georeferencing tools are essentially manual, requiring considerable data entry, much panning and zooming, and precise on-screen digitizing. Here we present alternative approaches based on pattern-matching and spatial computing intended to overcome the inefficiencies of standard tools. We also describe and make available two computer programs implementing the methods discussed. The first, designed for large-scale quadrangles, locates map boundaries, finds ground control points, and produces georeferenced images without operator assistance. Experiments show that quadrangle georeferencing can be reliably automated (88% success rate in our tests). A second program, developed for general maps at any scale, uses self-learning and other approaches to overcome most of the manual aspects of georeferencing. Both programs find control points with single-pixel accuracy, yield transform errors on the order of map linewidth, and can produce warped or unwarped images as desired.</description><identifier>DOI: 10.6084/m9.figshare.10033616</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Computational Biology ; FOS: Biological sciences ; FOS: Computer and information sciences ; Information Systems not elsewhere classified ; Medicine ; Neuroscience ; Plant Biology ; Space Science</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.10033616$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Burt, James E.</creatorcontrib><creatorcontrib>White, Jeremy</creatorcontrib><creatorcontrib>Allord, Gregory</creatorcontrib><creatorcontrib>Then, Kenneth M.</creatorcontrib><creatorcontrib>Zhu, A-Xing</creatorcontrib><title>Automated and semi-automated map georeferencing</title><description>Historical maps contain a wealth of information not generally available, but they must be referenced to well-known coordinate systems for maximum use in spatial analysis. Existing georeferencing tools are essentially manual, requiring considerable data entry, much panning and zooming, and precise on-screen digitizing. Here we present alternative approaches based on pattern-matching and spatial computing intended to overcome the inefficiencies of standard tools. We also describe and make available two computer programs implementing the methods discussed. The first, designed for large-scale quadrangles, locates map boundaries, finds ground control points, and produces georeferenced images without operator assistance. Experiments show that quadrangle georeferencing can be reliably automated (88% success rate in our tests). A second program, developed for general maps at any scale, uses self-learning and other approaches to overcome most of the manual aspects of georeferencing. Both programs find control points with single-pixel accuracy, yield transform errors on the order of map linewidth, and can produce warped or unwarped images as desired.</description><subject>Computational Biology</subject><subject>FOS: Biological sciences</subject><subject>FOS: Computer and information sciences</subject><subject>Information Systems not elsewhere classified</subject><subject>Medicine</subject><subject>Neuroscience</subject><subject>Plant Biology</subject><subject>Space Science</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNo9z71qwzAUhmEtGUrSO-jgG7AjWX8-YwjpDwS6ZBdH0pErqJwgO0PvPoQ2nT54hw8exl4E7wwf1LZAl_I4f2GlTnAupRHmiW131-VccKHY4BSbmUpu8T8VvDQjnSslqjSFPI0btkr4PdPz367Z6fVw2r-3x8-3j_3u2EYQpg2-F6aHqBJYrpSwmsckyQ62B0t-8EGDlmh5DEA2RKURvFfJJ2kHLaVcM_V7G3HBkBdyl5oL1h8nuLtzXAH34LgHR94Am2JGIw</recordid><startdate>20210929</startdate><enddate>20210929</enddate><creator>Burt, James E.</creator><creator>White, Jeremy</creator><creator>Allord, Gregory</creator><creator>Then, Kenneth M.</creator><creator>Zhu, A-Xing</creator><general>Taylor &amp; Francis</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20210929</creationdate><title>Automated and semi-automated map georeferencing</title><author>Burt, James E. ; White, Jeremy ; Allord, Gregory ; Then, Kenneth M. ; Zhu, A-Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d916-cb21629d4f970441750df3e787297eb8bc5953a70dc9e7cd45a9bb4fbf3785333</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Biology</topic><topic>FOS: Biological sciences</topic><topic>FOS: Computer and information sciences</topic><topic>Information Systems not elsewhere classified</topic><topic>Medicine</topic><topic>Neuroscience</topic><topic>Plant Biology</topic><topic>Space Science</topic><toplevel>online_resources</toplevel><creatorcontrib>Burt, James E.</creatorcontrib><creatorcontrib>White, Jeremy</creatorcontrib><creatorcontrib>Allord, Gregory</creatorcontrib><creatorcontrib>Then, Kenneth M.</creatorcontrib><creatorcontrib>Zhu, A-Xing</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Burt, James E.</au><au>White, Jeremy</au><au>Allord, Gregory</au><au>Then, Kenneth M.</au><au>Zhu, A-Xing</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Automated and semi-automated map georeferencing</title><date>2021-09-29</date><risdate>2021</risdate><abstract>Historical maps contain a wealth of information not generally available, but they must be referenced to well-known coordinate systems for maximum use in spatial analysis. Existing georeferencing tools are essentially manual, requiring considerable data entry, much panning and zooming, and precise on-screen digitizing. Here we present alternative approaches based on pattern-matching and spatial computing intended to overcome the inefficiencies of standard tools. We also describe and make available two computer programs implementing the methods discussed. The first, designed for large-scale quadrangles, locates map boundaries, finds ground control points, and produces georeferenced images without operator assistance. Experiments show that quadrangle georeferencing can be reliably automated (88% success rate in our tests). A second program, developed for general maps at any scale, uses self-learning and other approaches to overcome most of the manual aspects of georeferencing. Both programs find control points with single-pixel accuracy, yield transform errors on the order of map linewidth, and can produce warped or unwarped images as desired.</abstract><pub>Taylor &amp; Francis</pub><doi>10.6084/m9.figshare.10033616</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.10033616
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_10033616
source DataCite
subjects Computational Biology
FOS: Biological sciences
FOS: Computer and information sciences
Information Systems not elsewhere classified
Medicine
Neuroscience
Plant Biology
Space Science
title Automated and semi-automated map georeferencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Burt,%20James%20E.&rft.date=2021-09-29&rft_id=info:doi/10.6084/m9.figshare.10033616&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_10033616%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true