A Practical Guide to Characterising Data and Investigating Data Quality
This guide is designed for data scientists to use in their day-to-day work, and describes a comprehensive list of tasks to perform when investigating data quality and profiling data, and a six-step recommended workflow. Each of the 62 tasks is articulated as a question (and sometimes several questio...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ruddle, Roy Cheshire, James Johansson Fernstad, Sara |
description | This guide is designed for data scientists to use in their day-to-day work, and describes a comprehensive list of tasks to perform when investigating data quality and profiling data, and a six-step recommended workflow. Each of the 62 tasks is articulated as a question (and sometimes several questions) to answer about your data. The guide also provides pointers to a Python package (vizdataquality) that implements the workflow, a film about visualizing data quality and other useful resources. |
doi_str_mv | 10.5518/1481 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5518_1481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5518_1481</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5518_14813</originalsourceid><addsrcrecordid>eNpjYOAxNNAzNTW00Dc0sTDkZHB3VAgoSkwuyUxOzFFwL81MSVUoyVdwzkgECaYWZRZn5qUruCSWJCok5qUoeOaVpRaXZKYnlsCFA0sTczJLKnkYWNMSc4pTeaE0N4OKm2uIs4duClBRcmZJanxBUWZuYlFlvKFBPMj-eJD9xkQqAwDvnThB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>A Practical Guide to Characterising Data and Investigating Data Quality</title><source>DataCite</source><creator>Ruddle, Roy ; Cheshire, James ; Johansson Fernstad, Sara</creator><creatorcontrib>Ruddle, Roy ; Cheshire, James ; Johansson Fernstad, Sara</creatorcontrib><description>This guide is designed for data scientists to use in their day-to-day work, and describes a comprehensive list of tasks to perform when investigating data quality and profiling data, and a six-step recommended workflow. Each of the 62 tasks is articulated as a question (and sometimes several questions) to answer about your data. The guide also provides pointers to a Python package (vizdataquality) that implements the workflow, a film about visualizing data quality and other useful resources.</description><identifier>DOI: 10.5518/1481</identifier><language>eng</language><publisher>University of Leeds</publisher><subject>FOS: Computer and information sciences</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8662-8103 ; 0000-0003-4552-5989 ; 0000-0003-4518-5144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5518/1481$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ruddle, Roy</creatorcontrib><creatorcontrib>Cheshire, James</creatorcontrib><creatorcontrib>Johansson Fernstad, Sara</creatorcontrib><title>A Practical Guide to Characterising Data and Investigating Data Quality</title><description>This guide is designed for data scientists to use in their day-to-day work, and describes a comprehensive list of tasks to perform when investigating data quality and profiling data, and a six-step recommended workflow. Each of the 62 tasks is articulated as a question (and sometimes several questions) to answer about your data. The guide also provides pointers to a Python package (vizdataquality) that implements the workflow, a film about visualizing data quality and other useful resources.</description><subject>FOS: Computer and information sciences</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYOAxNNAzNTW00Dc0sTDkZHB3VAgoSkwuyUxOzFFwL81MSVUoyVdwzkgECaYWZRZn5qUruCSWJCok5qUoeOaVpRaXZKYnlsCFA0sTczJLKnkYWNMSc4pTeaE0N4OKm2uIs4duClBRcmZJanxBUWZuYlFlvKFBPMj-eJD9xkQqAwDvnThB</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ruddle, Roy</creator><creator>Cheshire, James</creator><creator>Johansson Fernstad, Sara</creator><general>University of Leeds</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0001-8662-8103</orcidid><orcidid>https://orcid.org/0000-0003-4552-5989</orcidid><orcidid>https://orcid.org/0000-0003-4518-5144</orcidid></search><sort><creationdate>2024</creationdate><title>A Practical Guide to Characterising Data and Investigating Data Quality</title><author>Ruddle, Roy ; Cheshire, James ; Johansson Fernstad, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5518_14813</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>FOS: Computer and information sciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruddle, Roy</creatorcontrib><creatorcontrib>Cheshire, James</creatorcontrib><creatorcontrib>Johansson Fernstad, Sara</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruddle, Roy</au><au>Cheshire, James</au><au>Johansson Fernstad, Sara</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>A Practical Guide to Characterising Data and Investigating Data Quality</title><date>2024</date><risdate>2024</risdate><abstract>This guide is designed for data scientists to use in their day-to-day work, and describes a comprehensive list of tasks to perform when investigating data quality and profiling data, and a six-step recommended workflow. Each of the 62 tasks is articulated as a question (and sometimes several questions) to answer about your data. The guide also provides pointers to a Python package (vizdataquality) that implements the workflow, a film about visualizing data quality and other useful resources.</abstract><pub>University of Leeds</pub><doi>10.5518/1481</doi><orcidid>https://orcid.org/0000-0001-8662-8103</orcidid><orcidid>https://orcid.org/0000-0003-4552-5989</orcidid><orcidid>https://orcid.org/0000-0003-4518-5144</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.5518/1481 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_5518_1481 |
source | DataCite |
subjects | FOS: Computer and information sciences |
title | A Practical Guide to Characterising Data and Investigating Data Quality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Ruddle,%20Roy&rft.date=2024&rft_id=info:doi/10.5518/1481&rft_dat=%3Cdatacite_PQ8%3E10_5518_1481%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |