Scanning cavity microscopy of a single-crystal diamond membrane

Spin-bearing color centers in the solid state are promising candidates for the realization of quantum networks and distributed quantum computing. A remaining key challenge is their efficient and reliable interfacing to photons. Incorporating minimally processed membranes into open-access microcaviti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Körber, Jonathan, Pallmann, Maximilian, Heupel, Julia, Stöhr, Rainer, Vasilenko, Evgenij, Hümmer, Thomas, Kohler, Larissa, Popov, Cyril, Hunger, David
Format: Report
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Körber, Jonathan
Pallmann, Maximilian
Heupel, Julia
Stöhr, Rainer
Vasilenko, Evgenij
Hümmer, Thomas
Kohler, Larissa
Popov, Cyril
Hunger, David
description Spin-bearing color centers in the solid state are promising candidates for the realization of quantum networks and distributed quantum computing. A remaining key challenge is their efficient and reliable interfacing to photons. Incorporating minimally processed membranes into open-access microcavities represents a promising route for Purcellenhanced spin-photon interfaces: it enables significant emission enhancement and efficient photon collection, minimizes deteriorating influence on the quantum emitter, and allows for full spatial and spectral tunability, key for controllably addressing suitable emitters with desired optical and spin properties. Here, we study the properties of a high-finesse fiber Fabry-Pérot microcavity with integrated single-crystal diamond membranes by scanning cavity microscopy. We observe spatially resolved the effects of the diamond-air interface on the cavity mode structure: a strong correlation of the cavity finesse and mode structure with the diamond thickness and surface topography, significant transverse-mode mixing under diamond-like conditions, and mode-character-dependent polarization-mode splitting. Our results reveal the influence of the diamond surface on the achievable Purcell enhancement, which helps to clarify the route towards optimized spin-photon interfaces.
doi_str_mv 10.5445/ir/1000152666
format Report
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5445_ir_1000152666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5445_ir_1000152666</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5445_ir_10001526663</originalsourceid><addsrcrecordid>eNqVjj0LwjAUALM4iDq6vz8Qm2jb1UEUd93DM03Lg3yUlyDk36sgODvdcDecEFutdl3bdg1xo5VSutv3fb8Ux5vFGClOYPFJpUIgyynbNFdIIyDkt_NOWq65oIeBMKQ4QHDhwRjdWixG9NltvlwJeTnfT1c5YEFLxZmZKSBXo5X5DBhi8xs4_Nu_AEY4PXE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Scanning cavity microscopy of a single-crystal diamond membrane</title><source>DataCite</source><creator>Körber, Jonathan ; Pallmann, Maximilian ; Heupel, Julia ; Stöhr, Rainer ; Vasilenko, Evgenij ; Hümmer, Thomas ; Kohler, Larissa ; Popov, Cyril ; Hunger, David</creator><creatorcontrib>Körber, Jonathan ; Pallmann, Maximilian ; Heupel, Julia ; Stöhr, Rainer ; Vasilenko, Evgenij ; Hümmer, Thomas ; Kohler, Larissa ; Popov, Cyril ; Hunger, David</creatorcontrib><description>Spin-bearing color centers in the solid state are promising candidates for the realization of quantum networks and distributed quantum computing. A remaining key challenge is their efficient and reliable interfacing to photons. Incorporating minimally processed membranes into open-access microcavities represents a promising route for Purcellenhanced spin-photon interfaces: it enables significant emission enhancement and efficient photon collection, minimizes deteriorating influence on the quantum emitter, and allows for full spatial and spectral tunability, key for controllably addressing suitable emitters with desired optical and spin properties. Here, we study the properties of a high-finesse fiber Fabry-Pérot microcavity with integrated single-crystal diamond membranes by scanning cavity microscopy. We observe spatially resolved the effects of the diamond-air interface on the cavity mode structure: a strong correlation of the cavity finesse and mode structure with the diamond thickness and surface topography, significant transverse-mode mixing under diamond-like conditions, and mode-character-dependent polarization-mode splitting. Our results reveal the influence of the diamond surface on the achievable Purcell enhancement, which helps to clarify the route towards optimized spin-photon interfaces.</description><identifier>DOI: 10.5445/ir/1000152666</identifier><language>eng</language><publisher>Karlsruher Institut für Technologie (KIT)</publisher><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,1896,4492</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5445/ir/1000152666$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Körber, Jonathan</creatorcontrib><creatorcontrib>Pallmann, Maximilian</creatorcontrib><creatorcontrib>Heupel, Julia</creatorcontrib><creatorcontrib>Stöhr, Rainer</creatorcontrib><creatorcontrib>Vasilenko, Evgenij</creatorcontrib><creatorcontrib>Hümmer, Thomas</creatorcontrib><creatorcontrib>Kohler, Larissa</creatorcontrib><creatorcontrib>Popov, Cyril</creatorcontrib><creatorcontrib>Hunger, David</creatorcontrib><title>Scanning cavity microscopy of a single-crystal diamond membrane</title><description>Spin-bearing color centers in the solid state are promising candidates for the realization of quantum networks and distributed quantum computing. A remaining key challenge is their efficient and reliable interfacing to photons. Incorporating minimally processed membranes into open-access microcavities represents a promising route for Purcellenhanced spin-photon interfaces: it enables significant emission enhancement and efficient photon collection, minimizes deteriorating influence on the quantum emitter, and allows for full spatial and spectral tunability, key for controllably addressing suitable emitters with desired optical and spin properties. Here, we study the properties of a high-finesse fiber Fabry-Pérot microcavity with integrated single-crystal diamond membranes by scanning cavity microscopy. We observe spatially resolved the effects of the diamond-air interface on the cavity mode structure: a strong correlation of the cavity finesse and mode structure with the diamond thickness and surface topography, significant transverse-mode mixing under diamond-like conditions, and mode-character-dependent polarization-mode splitting. Our results reveal the influence of the diamond surface on the achievable Purcell enhancement, which helps to clarify the route towards optimized spin-photon interfaces.</description><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2022</creationdate><recordtype>report</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjj0LwjAUALM4iDq6vz8Qm2jb1UEUd93DM03Lg3yUlyDk36sgODvdcDecEFutdl3bdg1xo5VSutv3fb8Ux5vFGClOYPFJpUIgyynbNFdIIyDkt_NOWq65oIeBMKQ4QHDhwRjdWixG9NltvlwJeTnfT1c5YEFLxZmZKSBXo5X5DBhi8xs4_Nu_AEY4PXE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Körber, Jonathan</creator><creator>Pallmann, Maximilian</creator><creator>Heupel, Julia</creator><creator>Stöhr, Rainer</creator><creator>Vasilenko, Evgenij</creator><creator>Hümmer, Thomas</creator><creator>Kohler, Larissa</creator><creator>Popov, Cyril</creator><creator>Hunger, David</creator><general>Karlsruher Institut für Technologie (KIT)</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2022</creationdate><title>Scanning cavity microscopy of a single-crystal diamond membrane</title><author>Körber, Jonathan ; Pallmann, Maximilian ; Heupel, Julia ; Stöhr, Rainer ; Vasilenko, Evgenij ; Hümmer, Thomas ; Kohler, Larissa ; Popov, Cyril ; Hunger, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5445_ir_10001526663</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Körber, Jonathan</creatorcontrib><creatorcontrib>Pallmann, Maximilian</creatorcontrib><creatorcontrib>Heupel, Julia</creatorcontrib><creatorcontrib>Stöhr, Rainer</creatorcontrib><creatorcontrib>Vasilenko, Evgenij</creatorcontrib><creatorcontrib>Hümmer, Thomas</creatorcontrib><creatorcontrib>Kohler, Larissa</creatorcontrib><creatorcontrib>Popov, Cyril</creatorcontrib><creatorcontrib>Hunger, David</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Körber, Jonathan</au><au>Pallmann, Maximilian</au><au>Heupel, Julia</au><au>Stöhr, Rainer</au><au>Vasilenko, Evgenij</au><au>Hümmer, Thomas</au><au>Kohler, Larissa</au><au>Popov, Cyril</au><au>Hunger, David</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Scanning cavity microscopy of a single-crystal diamond membrane</btitle><date>2022</date><risdate>2022</risdate><abstract>Spin-bearing color centers in the solid state are promising candidates for the realization of quantum networks and distributed quantum computing. A remaining key challenge is their efficient and reliable interfacing to photons. Incorporating minimally processed membranes into open-access microcavities represents a promising route for Purcellenhanced spin-photon interfaces: it enables significant emission enhancement and efficient photon collection, minimizes deteriorating influence on the quantum emitter, and allows for full spatial and spectral tunability, key for controllably addressing suitable emitters with desired optical and spin properties. Here, we study the properties of a high-finesse fiber Fabry-Pérot microcavity with integrated single-crystal diamond membranes by scanning cavity microscopy. We observe spatially resolved the effects of the diamond-air interface on the cavity mode structure: a strong correlation of the cavity finesse and mode structure with the diamond thickness and surface topography, significant transverse-mode mixing under diamond-like conditions, and mode-character-dependent polarization-mode splitting. Our results reveal the influence of the diamond surface on the achievable Purcell enhancement, which helps to clarify the route towards optimized spin-photon interfaces.</abstract><pub>Karlsruher Institut für Technologie (KIT)</pub><doi>10.5445/ir/1000152666</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5445/ir/1000152666
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5445_ir_1000152666
source DataCite
title Scanning cavity microscopy of a single-crystal diamond membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Scanning%20cavity%20microscopy%20of%20a%20single-crystal%20diamond%20membrane&rft.au=K%C3%B6rber,%20Jonathan&rft.date=2022&rft_id=info:doi/10.5445/ir/1000152666&rft_dat=%3Cdatacite_PQ8%3E10_5445_ir_1000152666%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true