Magnetic control of GFP-like fluorescent proteins - Raw data 2

We've discovered a simple, nontoxic, biocompatible way to control the brightness of GFP-like fluorescent proteins via modest magnetic fields (~10 mT). Fluorescent proteins which seem magnetically inert (e.g. EGFP, mScarlet) become magnetoresponsive in the presence of an appropriate cofactor (e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rebecca Frank Hayward, Julia R. Lazzari-Dean, Andrew G. York, Maria Ingaramo
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rebecca Frank Hayward
Julia R. Lazzari-Dean
Andrew G. York
Maria Ingaramo
description We've discovered a simple, nontoxic, biocompatible way to control the brightness of GFP-like fluorescent proteins via modest magnetic fields (~10 mT). Fluorescent proteins which seem magnetically inert (e.g. EGFP, mScarlet) become magnetoresponsive in the presence of an appropriate cofactor (e.g. EGFP-FlavinTag, or an mScarlet/FMN solution). This method works at room-temperature and body-temperature, in vitro, in E. coli and in cultured mammalian cells. The GFP-family magnetoresponse is weak (ΔF/F≈1%), but shows the hallmarks of evolvability. This suggests exciting technological possibilities, both short-term (e.g. lock-in detection, multiplexing) and long-term (e.g. optically-detected MRI, magnetogenetics). We've also discovered weak magnetoresponse from a member of the LOV-domain family. This suggests the possibility that magnetoresponse is a general feature of fluorescent proteins, and not unique to the cryptochrome/photolyase family.   This repository holds some of the raw data for the main text figures. For the contents of the paper, please see: doi.org/10.5281/zenodo.8137174
doi_str_mv 10.5281/zenodo.8137092
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_8137092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_8137092</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_81370923</originalsourceid><addsrcrecordid>eNpjYBAzNNAzNbIw1K9KzctPydezMDQ2N7A04mSw801Mz0styUxWSM7PKynKz1HIT1NwdwvQzcnMTlVIyynNL0otTk7NK1EoKMovSc3MK1bQVQhKLFdISSxJVDDiYWBNS8wpTuWF0twMem6uIc4euiDp5MyS1PiCoszcxKLKeEODeJAD4iEOiIc6wJhkDQDLUD78</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Magnetic control of GFP-like fluorescent proteins - Raw data 2</title><source>DataCite</source><creator>Rebecca Frank Hayward ; Julia R. Lazzari-Dean ; Andrew G. York ; Maria Ingaramo</creator><creatorcontrib>Rebecca Frank Hayward ; Julia R. Lazzari-Dean ; Andrew G. York ; Maria Ingaramo</creatorcontrib><description>We've discovered a simple, nontoxic, biocompatible way to control the brightness of GFP-like fluorescent proteins via modest magnetic fields (~10 mT). Fluorescent proteins which seem magnetically inert (e.g. EGFP, mScarlet) become magnetoresponsive in the presence of an appropriate cofactor (e.g. EGFP-FlavinTag, or an mScarlet/FMN solution). This method works at room-temperature and body-temperature, in vitro, in E. coli and in cultured mammalian cells. The GFP-family magnetoresponse is weak (ΔF/F≈1%), but shows the hallmarks of evolvability. This suggests exciting technological possibilities, both short-term (e.g. lock-in detection, multiplexing) and long-term (e.g. optically-detected MRI, magnetogenetics). We've also discovered weak magnetoresponse from a member of the LOV-domain family. This suggests the possibility that magnetoresponse is a general feature of fluorescent proteins, and not unique to the cryptochrome/photolyase family.   This repository holds some of the raw data for the main text figures. For the contents of the paper, please see: doi.org/10.5281/zenodo.8137174</description><identifier>DOI: 10.5281/zenodo.8137092</identifier><language>eng</language><publisher>Zenodo</publisher><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1893</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.8137092$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rebecca Frank Hayward</creatorcontrib><creatorcontrib>Julia R. Lazzari-Dean</creatorcontrib><creatorcontrib>Andrew G. York</creatorcontrib><creatorcontrib>Maria Ingaramo</creatorcontrib><title>Magnetic control of GFP-like fluorescent proteins - Raw data 2</title><description>We've discovered a simple, nontoxic, biocompatible way to control the brightness of GFP-like fluorescent proteins via modest magnetic fields (~10 mT). Fluorescent proteins which seem magnetically inert (e.g. EGFP, mScarlet) become magnetoresponsive in the presence of an appropriate cofactor (e.g. EGFP-FlavinTag, or an mScarlet/FMN solution). This method works at room-temperature and body-temperature, in vitro, in E. coli and in cultured mammalian cells. The GFP-family magnetoresponse is weak (ΔF/F≈1%), but shows the hallmarks of evolvability. This suggests exciting technological possibilities, both short-term (e.g. lock-in detection, multiplexing) and long-term (e.g. optically-detected MRI, magnetogenetics). We've also discovered weak magnetoresponse from a member of the LOV-domain family. This suggests the possibility that magnetoresponse is a general feature of fluorescent proteins, and not unique to the cryptochrome/photolyase family.   This repository holds some of the raw data for the main text figures. For the contents of the paper, please see: doi.org/10.5281/zenodo.8137174</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAzNNAzNbIw1K9KzctPydezMDQ2N7A04mSw801Mz0styUxWSM7PKynKz1HIT1NwdwvQzcnMTlVIyynNL0otTk7NK1EoKMovSc3MK1bQVQhKLFdISSxJVDDiYWBNS8wpTuWF0twMem6uIc4euiDp5MyS1PiCoszcxKLKeEODeJAD4iEOiIc6wJhkDQDLUD78</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Rebecca Frank Hayward</creator><creator>Julia R. Lazzari-Dean</creator><creator>Andrew G. York</creator><creator>Maria Ingaramo</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20230711</creationdate><title>Magnetic control of GFP-like fluorescent proteins - Raw data 2</title><author>Rebecca Frank Hayward ; Julia R. Lazzari-Dean ; Andrew G. York ; Maria Ingaramo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_81370923</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rebecca Frank Hayward</creatorcontrib><creatorcontrib>Julia R. Lazzari-Dean</creatorcontrib><creatorcontrib>Andrew G. York</creatorcontrib><creatorcontrib>Maria Ingaramo</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rebecca Frank Hayward</au><au>Julia R. Lazzari-Dean</au><au>Andrew G. York</au><au>Maria Ingaramo</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Magnetic control of GFP-like fluorescent proteins - Raw data 2</title><date>2023-07-11</date><risdate>2023</risdate><abstract>We've discovered a simple, nontoxic, biocompatible way to control the brightness of GFP-like fluorescent proteins via modest magnetic fields (~10 mT). Fluorescent proteins which seem magnetically inert (e.g. EGFP, mScarlet) become magnetoresponsive in the presence of an appropriate cofactor (e.g. EGFP-FlavinTag, or an mScarlet/FMN solution). This method works at room-temperature and body-temperature, in vitro, in E. coli and in cultured mammalian cells. The GFP-family magnetoresponse is weak (ΔF/F≈1%), but shows the hallmarks of evolvability. This suggests exciting technological possibilities, both short-term (e.g. lock-in detection, multiplexing) and long-term (e.g. optically-detected MRI, magnetogenetics). We've also discovered weak magnetoresponse from a member of the LOV-domain family. This suggests the possibility that magnetoresponse is a general feature of fluorescent proteins, and not unique to the cryptochrome/photolyase family.   This repository holds some of the raw data for the main text figures. For the contents of the paper, please see: doi.org/10.5281/zenodo.8137174</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.8137092</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.8137092
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_8137092
source DataCite
title Magnetic control of GFP-like fluorescent proteins - Raw data 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Rebecca%20Frank%20Hayward&rft.date=2023-07-11&rft_id=info:doi/10.5281/zenodo.8137092&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_8137092%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true