A deep learning-based dataset of WFA-positive perineuronal nets and parvalbumin neurons localizations in the adult mouse brain

Quality-controlled predictions of deep learning models for cell counting This dataset contains high-resolution images for the visualization of perineuronal nets (PNNs) and parvalbumin-expressing (PV) cells analyzed in the paper: A Comprehensive Atlas of Perineuronal Net Distribution and Colocalizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lupori, Leonardo, Totaro, Valentino, Cornuti, Sara, Ciampi, Luca, Carrara, Fabio, Grilli, Edda, Viglione, Aurelia, Tozzi, Francesca, Putignano, Elena, Mazziotti, Raffaele, Amato, Giuseppe, Gennaro, Claudio, Tognini, Paola, Pizzorusso, Tommaso
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lupori, Leonardo
Totaro, Valentino
Cornuti, Sara
Ciampi, Luca
Carrara, Fabio
Grilli, Edda
Viglione, Aurelia
Tozzi, Francesca
Putignano, Elena
Mazziotti, Raffaele
Amato, Giuseppe
Gennaro, Claudio
Tognini, Paola
Pizzorusso, Tommaso
description Quality-controlled predictions of deep learning models for cell counting This dataset contains high-resolution images for the visualization of perineuronal nets (PNNs) and parvalbumin-expressing (PV) cells analyzed in the paper: A Comprehensive Atlas of Perineuronal Net Distribution and Colocalization with Parvalbumin in the Adult Mouse Brain. The dataset integrates the raw data published on a previous upload on Zenodo. Cell locations were obtained using two deep-learning models for cell counting (publicly available on GitHub, details in the paper by Ciampi et al., 2022). The output of the deep-learning pipeline was filtered based on the score assigned to each cell prediction, by removing all the PNNs with a score lower than 0.4 and all the PV cells with a score lower than 0.55. Cases of artefactual cell detection were finally removed manually by visual inspection of the images. Content The dataset contains microscopy images of coronal brain slices from 7 adult mice. The objects highlighted in these images represent the final set of PNNs/PV cells that were used in all the analysis of the paper. Folder Structure and file naming conventions There are separate folders for each mouse. Each folder is named with the ID of that mouse. Within each folder, images are assigned a code specifying the channel (C1 for PNNs, C2 for PV cells).
doi_str_mv 10.5281/zenodo.7886214
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_7886214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_7886214</sourcerecordid><originalsourceid>FETCH-LOGICAL-d794-4c44965919429497f682a7693d31b076106b6105530a24dc357ff7a6a930406d3</originalsourceid><addsrcrecordid>eNotkDFrwzAUhL10KGnXzu8POJUsWbLGEJq2EOgSyGieredWoEhGlgPN0N_emGS54zg4uK8oXjhb11XDXy8Uoo1r3TSq4vKx-NuAJRrBE6bgwnfZ4UQWLOarZ4gDHHebcoyTy-5MMFJygeYUA3oIlCfAYGHEdEbfzScX4NZO4GOP3l0wuyVdi_xDgHb2GU5xngi6hC48FQ8D-ome774qDru3w_aj3H-9f243-9JqI0vZS2lUbbiRlZFGD6qpUCsjrOAd04oz1V2lrgXDStpe1HoYNCo0gkmmrFgV69vs8qt3mdoxuROm35azduHS3ri0dy7iH0QqXkM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>A deep learning-based dataset of WFA-positive perineuronal nets and parvalbumin neurons localizations in the adult mouse brain</title><source>DataCite</source><creator>Lupori, Leonardo ; Totaro, Valentino ; Cornuti, Sara ; Ciampi, Luca ; Carrara, Fabio ; Grilli, Edda ; Viglione, Aurelia ; Tozzi, Francesca ; Putignano, Elena ; Mazziotti, Raffaele ; Amato, Giuseppe ; Gennaro, Claudio ; Tognini, Paola ; Pizzorusso, Tommaso</creator><creatorcontrib>Lupori, Leonardo ; Totaro, Valentino ; Cornuti, Sara ; Ciampi, Luca ; Carrara, Fabio ; Grilli, Edda ; Viglione, Aurelia ; Tozzi, Francesca ; Putignano, Elena ; Mazziotti, Raffaele ; Amato, Giuseppe ; Gennaro, Claudio ; Tognini, Paola ; Pizzorusso, Tommaso</creatorcontrib><description>Quality-controlled predictions of deep learning models for cell counting This dataset contains high-resolution images for the visualization of perineuronal nets (PNNs) and parvalbumin-expressing (PV) cells analyzed in the paper: A Comprehensive Atlas of Perineuronal Net Distribution and Colocalization with Parvalbumin in the Adult Mouse Brain. The dataset integrates the raw data published on a previous upload on Zenodo. Cell locations were obtained using two deep-learning models for cell counting (publicly available on GitHub, details in the paper by Ciampi et al., 2022). The output of the deep-learning pipeline was filtered based on the score assigned to each cell prediction, by removing all the PNNs with a score lower than 0.4 and all the PV cells with a score lower than 0.55. Cases of artefactual cell detection were finally removed manually by visual inspection of the images. Content The dataset contains microscopy images of coronal brain slices from 7 adult mice. The objects highlighted in these images represent the final set of PNNs/PV cells that were used in all the analysis of the paper. Folder Structure and file naming conventions There are separate folders for each mouse. Each folder is named with the ID of that mouse. Within each folder, images are assigned a code specifying the channel (C1 for PNNs, C2 for PV cells).</description><identifier>DOI: 10.5281/zenodo.7886214</identifier><language>eng</language><publisher>Zenodo</publisher><subject>biological ; brain ; cell ; deep-learning ; microscopy ; mouse ; parvalbumin ; perineuronal nets ; pnns</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3429-3465 ; 0000-0002-3715-149X ; 0000-0001-5614-0668 ; 0000-0003-1597-2681 ; 0000-0001-5344-5079 ; 0000-0001-7055-4701 ; 0000-0001-5125-4738 ; 0000-0003-0171-4315 ; 0000-0003-0458-5635 ; 0000-0001-5014-5089 ; 0000-0002-6985-0439 ; 0000-0002-9822-7048 ; 0000-0002-4313-408X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.7886214$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lupori, Leonardo</creatorcontrib><creatorcontrib>Totaro, Valentino</creatorcontrib><creatorcontrib>Cornuti, Sara</creatorcontrib><creatorcontrib>Ciampi, Luca</creatorcontrib><creatorcontrib>Carrara, Fabio</creatorcontrib><creatorcontrib>Grilli, Edda</creatorcontrib><creatorcontrib>Viglione, Aurelia</creatorcontrib><creatorcontrib>Tozzi, Francesca</creatorcontrib><creatorcontrib>Putignano, Elena</creatorcontrib><creatorcontrib>Mazziotti, Raffaele</creatorcontrib><creatorcontrib>Amato, Giuseppe</creatorcontrib><creatorcontrib>Gennaro, Claudio</creatorcontrib><creatorcontrib>Tognini, Paola</creatorcontrib><creatorcontrib>Pizzorusso, Tommaso</creatorcontrib><title>A deep learning-based dataset of WFA-positive perineuronal nets and parvalbumin neurons localizations in the adult mouse brain</title><description>Quality-controlled predictions of deep learning models for cell counting This dataset contains high-resolution images for the visualization of perineuronal nets (PNNs) and parvalbumin-expressing (PV) cells analyzed in the paper: A Comprehensive Atlas of Perineuronal Net Distribution and Colocalization with Parvalbumin in the Adult Mouse Brain. The dataset integrates the raw data published on a previous upload on Zenodo. Cell locations were obtained using two deep-learning models for cell counting (publicly available on GitHub, details in the paper by Ciampi et al., 2022). The output of the deep-learning pipeline was filtered based on the score assigned to each cell prediction, by removing all the PNNs with a score lower than 0.4 and all the PV cells with a score lower than 0.55. Cases of artefactual cell detection were finally removed manually by visual inspection of the images. Content The dataset contains microscopy images of coronal brain slices from 7 adult mice. The objects highlighted in these images represent the final set of PNNs/PV cells that were used in all the analysis of the paper. Folder Structure and file naming conventions There are separate folders for each mouse. Each folder is named with the ID of that mouse. Within each folder, images are assigned a code specifying the channel (C1 for PNNs, C2 for PV cells).</description><subject>biological</subject><subject>brain</subject><subject>cell</subject><subject>deep-learning</subject><subject>microscopy</subject><subject>mouse</subject><subject>parvalbumin</subject><subject>perineuronal nets</subject><subject>pnns</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotkDFrwzAUhL10KGnXzu8POJUsWbLGEJq2EOgSyGieredWoEhGlgPN0N_emGS54zg4uK8oXjhb11XDXy8Uoo1r3TSq4vKx-NuAJRrBE6bgwnfZ4UQWLOarZ4gDHHebcoyTy-5MMFJygeYUA3oIlCfAYGHEdEbfzScX4NZO4GOP3l0wuyVdi_xDgHb2GU5xngi6hC48FQ8D-ome774qDru3w_aj3H-9f243-9JqI0vZS2lUbbiRlZFGD6qpUCsjrOAd04oz1V2lrgXDStpe1HoYNCo0gkmmrFgV69vs8qt3mdoxuROm35azduHS3ri0dy7iH0QqXkM</recordid><startdate>20230502</startdate><enddate>20230502</enddate><creator>Lupori, Leonardo</creator><creator>Totaro, Valentino</creator><creator>Cornuti, Sara</creator><creator>Ciampi, Luca</creator><creator>Carrara, Fabio</creator><creator>Grilli, Edda</creator><creator>Viglione, Aurelia</creator><creator>Tozzi, Francesca</creator><creator>Putignano, Elena</creator><creator>Mazziotti, Raffaele</creator><creator>Amato, Giuseppe</creator><creator>Gennaro, Claudio</creator><creator>Tognini, Paola</creator><creator>Pizzorusso, Tommaso</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-3429-3465</orcidid><orcidid>https://orcid.org/0000-0002-3715-149X</orcidid><orcidid>https://orcid.org/0000-0001-5614-0668</orcidid><orcidid>https://orcid.org/0000-0003-1597-2681</orcidid><orcidid>https://orcid.org/0000-0001-5344-5079</orcidid><orcidid>https://orcid.org/0000-0001-7055-4701</orcidid><orcidid>https://orcid.org/0000-0001-5125-4738</orcidid><orcidid>https://orcid.org/0000-0003-0171-4315</orcidid><orcidid>https://orcid.org/0000-0003-0458-5635</orcidid><orcidid>https://orcid.org/0000-0001-5014-5089</orcidid><orcidid>https://orcid.org/0000-0002-6985-0439</orcidid><orcidid>https://orcid.org/0000-0002-9822-7048</orcidid><orcidid>https://orcid.org/0000-0002-4313-408X</orcidid></search><sort><creationdate>20230502</creationdate><title>A deep learning-based dataset of WFA-positive perineuronal nets and parvalbumin neurons localizations in the adult mouse brain</title><author>Lupori, Leonardo ; Totaro, Valentino ; Cornuti, Sara ; Ciampi, Luca ; Carrara, Fabio ; Grilli, Edda ; Viglione, Aurelia ; Tozzi, Francesca ; Putignano, Elena ; Mazziotti, Raffaele ; Amato, Giuseppe ; Gennaro, Claudio ; Tognini, Paola ; Pizzorusso, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d794-4c44965919429497f682a7693d31b076106b6105530a24dc357ff7a6a930406d3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>biological</topic><topic>brain</topic><topic>cell</topic><topic>deep-learning</topic><topic>microscopy</topic><topic>mouse</topic><topic>parvalbumin</topic><topic>perineuronal nets</topic><topic>pnns</topic><toplevel>online_resources</toplevel><creatorcontrib>Lupori, Leonardo</creatorcontrib><creatorcontrib>Totaro, Valentino</creatorcontrib><creatorcontrib>Cornuti, Sara</creatorcontrib><creatorcontrib>Ciampi, Luca</creatorcontrib><creatorcontrib>Carrara, Fabio</creatorcontrib><creatorcontrib>Grilli, Edda</creatorcontrib><creatorcontrib>Viglione, Aurelia</creatorcontrib><creatorcontrib>Tozzi, Francesca</creatorcontrib><creatorcontrib>Putignano, Elena</creatorcontrib><creatorcontrib>Mazziotti, Raffaele</creatorcontrib><creatorcontrib>Amato, Giuseppe</creatorcontrib><creatorcontrib>Gennaro, Claudio</creatorcontrib><creatorcontrib>Tognini, Paola</creatorcontrib><creatorcontrib>Pizzorusso, Tommaso</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lupori, Leonardo</au><au>Totaro, Valentino</au><au>Cornuti, Sara</au><au>Ciampi, Luca</au><au>Carrara, Fabio</au><au>Grilli, Edda</au><au>Viglione, Aurelia</au><au>Tozzi, Francesca</au><au>Putignano, Elena</au><au>Mazziotti, Raffaele</au><au>Amato, Giuseppe</au><au>Gennaro, Claudio</au><au>Tognini, Paola</au><au>Pizzorusso, Tommaso</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>A deep learning-based dataset of WFA-positive perineuronal nets and parvalbumin neurons localizations in the adult mouse brain</title><date>2023-05-02</date><risdate>2023</risdate><abstract>Quality-controlled predictions of deep learning models for cell counting This dataset contains high-resolution images for the visualization of perineuronal nets (PNNs) and parvalbumin-expressing (PV) cells analyzed in the paper: A Comprehensive Atlas of Perineuronal Net Distribution and Colocalization with Parvalbumin in the Adult Mouse Brain. The dataset integrates the raw data published on a previous upload on Zenodo. Cell locations were obtained using two deep-learning models for cell counting (publicly available on GitHub, details in the paper by Ciampi et al., 2022). The output of the deep-learning pipeline was filtered based on the score assigned to each cell prediction, by removing all the PNNs with a score lower than 0.4 and all the PV cells with a score lower than 0.55. Cases of artefactual cell detection were finally removed manually by visual inspection of the images. Content The dataset contains microscopy images of coronal brain slices from 7 adult mice. The objects highlighted in these images represent the final set of PNNs/PV cells that were used in all the analysis of the paper. Folder Structure and file naming conventions There are separate folders for each mouse. Each folder is named with the ID of that mouse. Within each folder, images are assigned a code specifying the channel (C1 for PNNs, C2 for PV cells).</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.7886214</doi><orcidid>https://orcid.org/0000-0003-3429-3465</orcidid><orcidid>https://orcid.org/0000-0002-3715-149X</orcidid><orcidid>https://orcid.org/0000-0001-5614-0668</orcidid><orcidid>https://orcid.org/0000-0003-1597-2681</orcidid><orcidid>https://orcid.org/0000-0001-5344-5079</orcidid><orcidid>https://orcid.org/0000-0001-7055-4701</orcidid><orcidid>https://orcid.org/0000-0001-5125-4738</orcidid><orcidid>https://orcid.org/0000-0003-0171-4315</orcidid><orcidid>https://orcid.org/0000-0003-0458-5635</orcidid><orcidid>https://orcid.org/0000-0001-5014-5089</orcidid><orcidid>https://orcid.org/0000-0002-6985-0439</orcidid><orcidid>https://orcid.org/0000-0002-9822-7048</orcidid><orcidid>https://orcid.org/0000-0002-4313-408X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.7886214
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_7886214
source DataCite
subjects biological
brain
cell
deep-learning
microscopy
mouse
parvalbumin
perineuronal nets
pnns
title A deep learning-based dataset of WFA-positive perineuronal nets and parvalbumin neurons localizations in the adult mouse brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Lupori,%20Leonardo&rft.date=2023-05-02&rft_id=info:doi/10.5281/zenodo.7886214&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_7886214%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true