Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model
This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Reale, Rafael F. Martins, Joberto S. B. |
description | This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computational Intelligence (CSCI'22), realized on 14 - 16 November 2022 in the USA. The ILLUSTRATED TECHNICAL PAPER format is intended to facilitate the reader's perception of the paper contents by complementing, enriching, and subsidizing the technical paper content and slides with complementary text, and additional and/or focused bibliographic references. |
doi_str_mv | 10.5281/zenodo.7434588 |
format | Report |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_7434588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_7434588</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_74345883</originalsourceid><addsrcrecordid>eNqVjssKwjAQRbNxIerW9fyA1frAbn2ioCjiPgzJtB1IJyWNiH69iv6Aq_viwlGqn46S2ThLh08Sb30yn06msyxrq7B37tbEgJEsXMmUwgYdnLGmAAO4EEvug6GKJMKBMAhLAYviE9fUcCGAYuFUR674iZG9wJ1jCct3fWf7dgvnvPkuR2_JdVUrR9dQ76cdlWw319VuYDGi4Ui6DlxheOh0pD_Q-gutf9CTvw8v3hJTZg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model</title><source>DataCite</source><creator>Reale, Rafael F. ; Martins, Joberto S. B.</creator><creatorcontrib>Reale, Rafael F. ; Martins, Joberto S. B.</creatorcontrib><description>This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computational Intelligence (CSCI'22), realized on 14 - 16 November 2022 in the USA. The ILLUSTRATED TECHNICAL PAPER format is intended to facilitate the reader's perception of the paper contents by complementing, enriching, and subsidizing the technical paper content and slides with complementary text, and additional and/or focused bibliographic references.</description><identifier>DOI: 10.5281/zenodo.7434588</identifier><language>eng</language><publisher>Zenodo</publisher><subject>Agent Design ; Agent Optimization ; Bandwidth Allocation Model ; Reinforcement Learning ; RL Task Offloading</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1310-9366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,1890,4478</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.7434588$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Reale, Rafael F.</creatorcontrib><creatorcontrib>Martins, Joberto S. B.</creatorcontrib><title>Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model</title><description>This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computational Intelligence (CSCI'22), realized on 14 - 16 November 2022 in the USA. The ILLUSTRATED TECHNICAL PAPER format is intended to facilitate the reader's perception of the paper contents by complementing, enriching, and subsidizing the technical paper content and slides with complementary text, and additional and/or focused bibliographic references.</description><subject>Agent Design</subject><subject>Agent Optimization</subject><subject>Bandwidth Allocation Model</subject><subject>Reinforcement Learning</subject><subject>RL Task Offloading</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2022</creationdate><recordtype>report</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjssKwjAQRbNxIerW9fyA1frAbn2ioCjiPgzJtB1IJyWNiH69iv6Aq_viwlGqn46S2ThLh08Sb30yn06msyxrq7B37tbEgJEsXMmUwgYdnLGmAAO4EEvug6GKJMKBMAhLAYviE9fUcCGAYuFUR674iZG9wJ1jCct3fWf7dgvnvPkuR2_JdVUrR9dQ76cdlWw319VuYDGi4Ui6DlxheOh0pD_Q-gutf9CTvw8v3hJTZg</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Reale, Rafael F.</creator><creator>Martins, Joberto S. B.</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-1310-9366</orcidid></search><sort><creationdate>20221213</creationdate><title>Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model</title><author>Reale, Rafael F. ; Martins, Joberto S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_74345883</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agent Design</topic><topic>Agent Optimization</topic><topic>Bandwidth Allocation Model</topic><topic>Reinforcement Learning</topic><topic>RL Task Offloading</topic><toplevel>online_resources</toplevel><creatorcontrib>Reale, Rafael F.</creatorcontrib><creatorcontrib>Martins, Joberto S. B.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reale, Rafael F.</au><au>Martins, Joberto S. B.</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model</btitle><date>2022-12-13</date><risdate>2022</risdate><abstract>This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computational Intelligence (CSCI'22), realized on 14 - 16 November 2022 in the USA. The ILLUSTRATED TECHNICAL PAPER format is intended to facilitate the reader's perception of the paper contents by complementing, enriching, and subsidizing the technical paper content and slides with complementary text, and additional and/or focused bibliographic references.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.7434588</doi><orcidid>https://orcid.org/0000-0003-1310-9366</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.5281/zenodo.7434588 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_5281_zenodo_7434588 |
source | DataCite |
subjects | Agent Design Agent Optimization Bandwidth Allocation Model Reinforcement Learning RL Task Offloading |
title | Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Illustrated%20Technical%20Paper%20-%20Reinforcement%20Learning%20Agent%20Design%20and%20Optimization%20with%20Bandwidth%20Allocation%20Model&rft.au=Reale,%20Rafael%20F.&rft.date=2022-12-13&rft_id=info:doi/10.5281/zenodo.7434588&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_7434588%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |