Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model

This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reale, Rafael F., Martins, Joberto S. B.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Reale, Rafael F.
Martins, Joberto S. B.
description This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computational Intelligence (CSCI'22), realized on 14 - 16 November 2022 in the USA. The ILLUSTRATED TECHNICAL PAPER format is intended to facilitate the reader's perception of the paper contents by complementing, enriching, and subsidizing the technical paper content and slides with complementary text, and additional and/or focused bibliographic references.
doi_str_mv 10.5281/zenodo.7434588
format Report
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_7434588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_7434588</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_74345883</originalsourceid><addsrcrecordid>eNqVjssKwjAQRbNxIerW9fyA1frAbn2ioCjiPgzJtB1IJyWNiH69iv6Aq_viwlGqn46S2ThLh08Sb30yn06msyxrq7B37tbEgJEsXMmUwgYdnLGmAAO4EEvug6GKJMKBMAhLAYviE9fUcCGAYuFUR674iZG9wJ1jCct3fWf7dgvnvPkuR2_JdVUrR9dQ76cdlWw319VuYDGi4Ui6DlxheOh0pD_Q-gutf9CTvw8v3hJTZg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model</title><source>DataCite</source><creator>Reale, Rafael F. ; Martins, Joberto S. B.</creator><creatorcontrib>Reale, Rafael F. ; Martins, Joberto S. B.</creatorcontrib><description>This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computational Intelligence (CSCI'22), realized on 14 - 16 November 2022 in the USA. The ILLUSTRATED TECHNICAL PAPER format is intended to facilitate the reader's perception of the paper contents by complementing, enriching, and subsidizing the technical paper content and slides with complementary text, and additional and/or focused bibliographic references.</description><identifier>DOI: 10.5281/zenodo.7434588</identifier><language>eng</language><publisher>Zenodo</publisher><subject>Agent Design ; Agent Optimization ; Bandwidth Allocation Model ; Reinforcement Learning ; RL Task Offloading</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1310-9366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,1890,4478</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.7434588$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Reale, Rafael F.</creatorcontrib><creatorcontrib>Martins, Joberto S. B.</creatorcontrib><title>Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model</title><description>This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computational Intelligence (CSCI'22), realized on 14 - 16 November 2022 in the USA. The ILLUSTRATED TECHNICAL PAPER format is intended to facilitate the reader's perception of the paper contents by complementing, enriching, and subsidizing the technical paper content and slides with complementary text, and additional and/or focused bibliographic references.</description><subject>Agent Design</subject><subject>Agent Optimization</subject><subject>Bandwidth Allocation Model</subject><subject>Reinforcement Learning</subject><subject>RL Task Offloading</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2022</creationdate><recordtype>report</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjssKwjAQRbNxIerW9fyA1frAbn2ioCjiPgzJtB1IJyWNiH69iv6Aq_viwlGqn46S2ThLh08Sb30yn06msyxrq7B37tbEgJEsXMmUwgYdnLGmAAO4EEvug6GKJMKBMAhLAYviE9fUcCGAYuFUR674iZG9wJ1jCct3fWf7dgvnvPkuR2_JdVUrR9dQ76cdlWw319VuYDGi4Ui6DlxheOh0pD_Q-gutf9CTvw8v3hJTZg</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Reale, Rafael F.</creator><creator>Martins, Joberto S. B.</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-1310-9366</orcidid></search><sort><creationdate>20221213</creationdate><title>Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model</title><author>Reale, Rafael F. ; Martins, Joberto S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_74345883</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agent Design</topic><topic>Agent Optimization</topic><topic>Bandwidth Allocation Model</topic><topic>Reinforcement Learning</topic><topic>RL Task Offloading</topic><toplevel>online_resources</toplevel><creatorcontrib>Reale, Rafael F.</creatorcontrib><creatorcontrib>Martins, Joberto S. B.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reale, Rafael F.</au><au>Martins, Joberto S. B.</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model</btitle><date>2022-12-13</date><risdate>2022</risdate><abstract>This ILLUSTRATED TECHNICAL PAPER presents the slides and related discussion describing the contents of the paper "Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model". The talk was presented at the 9th Annual Conference on Computational Science and Computational Intelligence (CSCI'22), realized on 14 - 16 November 2022 in the USA. The ILLUSTRATED TECHNICAL PAPER format is intended to facilitate the reader's perception of the paper contents by complementing, enriching, and subsidizing the technical paper content and slides with complementary text, and additional and/or focused bibliographic references.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.7434588</doi><orcidid>https://orcid.org/0000-0003-1310-9366</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.7434588
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_7434588
source DataCite
subjects Agent Design
Agent Optimization
Bandwidth Allocation Model
Reinforcement Learning
RL Task Offloading
title Illustrated Technical Paper - Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Illustrated%20Technical%20Paper%20-%20Reinforcement%20Learning%20Agent%20Design%20and%20Optimization%20with%20Bandwidth%20Allocation%20Model&rft.au=Reale,%20Rafael%20F.&rft.date=2022-12-13&rft_id=info:doi/10.5281/zenodo.7434588&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_7434588%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true