Technical Leverage Analysis in the Python Ecosystem

Technical Leverage Analysis in the Python Ecosystem This dataset is the original dataset used in the publication [1]. It includes 21205 distinct package versions from the top 600 Python packages. An online demo for computing the proposed metrics for real-world software libraries is also available un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Paramitha, Ranindya, Massacci, Fabio
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Paramitha, Ranindya
Massacci, Fabio
description Technical Leverage Analysis in the Python Ecosystem This dataset is the original dataset used in the publication [1]. It includes 21205 distinct package versions from the top 600 Python packages. An online demo for computing the proposed metrics for real-world software libraries is also available under the following URL: https://techleverage.eu/. This work has been partially funded by the EU under the H2020 Program AssureMOSS (Grant n. 952647). [1] DOI: 10.1007/s10664-023-10355-2
doi_str_mv 10.5281/zenodo.7186627
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_7186627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_7186627</sourcerecordid><originalsourceid>FETCH-LOGICAL-d797-f16695a97ffcda246db02b6353299bd28f87f9338f1eb886a21bd343cbf07c043</originalsourceid><addsrcrecordid>eNotz7tqwzAUgGEtHUratbNewK4uti5jCOkFDO3gXRxJR7XAsYslCu7Tl5JM__bDR8gTZ20vDH_-xWWNa6u5UUroeyJHDNOSA8x0wB_c4AvpcYF5L7nQvNA6If3c67Qu9BzWspeKlwdyl2Au-HjrgYwv5_H01gwfr--n49BEbXWTuFK2B6tTChFEp6JnwivZS2Gtj8Iko5OV0iSO3hgFgvsoOxl8YjqwTh5Ie91GqBByRfe95Qtsu-PM_WPcFeNuGPkHkQ9Dzw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Technical Leverage Analysis in the Python Ecosystem</title><source>DataCite</source><creator>Paramitha, Ranindya ; Massacci, Fabio</creator><creatorcontrib>Paramitha, Ranindya ; Massacci, Fabio</creatorcontrib><description>Technical Leverage Analysis in the Python Ecosystem This dataset is the original dataset used in the publication [1]. It includes 21205 distinct package versions from the top 600 Python packages. An online demo for computing the proposed metrics for real-world software libraries is also available under the following URL: https://techleverage.eu/. This work has been partially funded by the EU under the H2020 Program AssureMOSS (Grant n. 952647). [1] DOI: 10.1007/s10664-023-10355-2</description><identifier>DOI: 10.5281/zenodo.7186627</identifier><language>eng</language><publisher>Zenodo</publisher><subject>Dependencies ; Empirical analysis ; Python ecosystem ; Security ; Software libraries ; Technical leverage ; Vulnerabilities</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6682-4243 ; 0000-0002-1091-8486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.7186627$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Paramitha, Ranindya</creatorcontrib><creatorcontrib>Massacci, Fabio</creatorcontrib><title>Technical Leverage Analysis in the Python Ecosystem</title><description>Technical Leverage Analysis in the Python Ecosystem This dataset is the original dataset used in the publication [1]. It includes 21205 distinct package versions from the top 600 Python packages. An online demo for computing the proposed metrics for real-world software libraries is also available under the following URL: https://techleverage.eu/. This work has been partially funded by the EU under the H2020 Program AssureMOSS (Grant n. 952647). [1] DOI: 10.1007/s10664-023-10355-2</description><subject>Dependencies</subject><subject>Empirical analysis</subject><subject>Python ecosystem</subject><subject>Security</subject><subject>Software libraries</subject><subject>Technical leverage</subject><subject>Vulnerabilities</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotz7tqwzAUgGEtHUratbNewK4uti5jCOkFDO3gXRxJR7XAsYslCu7Tl5JM__bDR8gTZ20vDH_-xWWNa6u5UUroeyJHDNOSA8x0wB_c4AvpcYF5L7nQvNA6If3c67Qu9BzWspeKlwdyl2Au-HjrgYwv5_H01gwfr--n49BEbXWTuFK2B6tTChFEp6JnwivZS2Gtj8Iko5OV0iSO3hgFgvsoOxl8YjqwTh5Ie91GqBByRfe95Qtsu-PM_WPcFeNuGPkHkQ9Dzw</recordid><startdate>20230720</startdate><enddate>20230720</enddate><creator>Paramitha, Ranindya</creator><creator>Massacci, Fabio</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-6682-4243</orcidid><orcidid>https://orcid.org/0000-0002-1091-8486</orcidid></search><sort><creationdate>20230720</creationdate><title>Technical Leverage Analysis in the Python Ecosystem</title><author>Paramitha, Ranindya ; Massacci, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d797-f16695a97ffcda246db02b6353299bd28f87f9338f1eb886a21bd343cbf07c043</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dependencies</topic><topic>Empirical analysis</topic><topic>Python ecosystem</topic><topic>Security</topic><topic>Software libraries</topic><topic>Technical leverage</topic><topic>Vulnerabilities</topic><toplevel>online_resources</toplevel><creatorcontrib>Paramitha, Ranindya</creatorcontrib><creatorcontrib>Massacci, Fabio</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paramitha, Ranindya</au><au>Massacci, Fabio</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Technical Leverage Analysis in the Python Ecosystem</title><date>2023-07-20</date><risdate>2023</risdate><abstract>Technical Leverage Analysis in the Python Ecosystem This dataset is the original dataset used in the publication [1]. It includes 21205 distinct package versions from the top 600 Python packages. An online demo for computing the proposed metrics for real-world software libraries is also available under the following URL: https://techleverage.eu/. This work has been partially funded by the EU under the H2020 Program AssureMOSS (Grant n. 952647). [1] DOI: 10.1007/s10664-023-10355-2</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.7186627</doi><orcidid>https://orcid.org/0000-0002-6682-4243</orcidid><orcidid>https://orcid.org/0000-0002-1091-8486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.7186627
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_7186627
source DataCite
subjects Dependencies
Empirical analysis
Python ecosystem
Security
Software libraries
Technical leverage
Vulnerabilities
title Technical Leverage Analysis in the Python Ecosystem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Paramitha,%20Ranindya&rft.date=2023-07-20&rft_id=info:doi/10.5281/zenodo.7186627&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_7186627%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true