1-km Antarctic net snow accumulation predictions

Overview We provide static predictions of net snow accumulation over the Antarctic Ice Sheet derived using a machine learning approach. Here, we train random forest models to predict variability in net accumulation using atmospheric variables and topographic characteristics as predictors at 1 km res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Medley, Brooke, Lenaerts, Jan T. M., Dattler, Marissa, Dattler, Eric, Wever, Nander
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Medley, Brooke
Lenaerts, Jan T. M.
Dattler, Marissa
Dattler, Eric
Wever, Nander
description Overview We provide static predictions of net snow accumulation over the Antarctic Ice Sheet derived using a machine learning approach. Here, we train random forest models to predict variability in net accumulation using atmospheric variables and topographic characteristics as predictors at 1 km resolution. Observations of net snow accumulation from both in situ and airborne radar data provide the input observable targets needed to train the random forest models. The data file includes all the predictors and predictands, an independent stake transect used for evaluation, four random forest gridded accumulation anomalies and their uncertainties, and a combined accumulation anomalies and its uncertainty. For a thorough description of how the predictions were generated generated see Medley et al. (2022).
doi_str_mv 10.5281/zenodo.7105854
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_7105854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_7105854</sourcerecordid><originalsourceid>FETCH-LOGICAL-d794-ffd5994a390d873294196f03430947a014b777b5882fd9f61b02647ea2f9a9f53</originalsourceid><addsrcrecordid>eNotzztrwzAUhmEtHUratbP-gN2jm6UzhtAbBLpkF8e6gEgsB1uhtL--hGT63umDh7EXAb2RTrz-pTrHubcCjDP6kYHojhPf1kZLaCXwmhpf6_zDKYTLdDlRK3Pl5yXFEq65PrGHTKc1Pd93ww7vb4fdZ7f__vjabfddtKi7nKNB1KQQorNKohY4ZFBaAWpLIPRorR2NczJHzIMYQQ7aJpIZCbNRG9bfbiM1CqUlf17KRMuvF-CvEn-T-LtE_QNGz0HF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>1-km Antarctic net snow accumulation predictions</title><source>DataCite</source><creator>Medley, Brooke ; Lenaerts, Jan T. M. ; Dattler, Marissa ; Dattler, Eric ; Wever, Nander</creator><creatorcontrib>Medley, Brooke ; Lenaerts, Jan T. M. ; Dattler, Marissa ; Dattler, Eric ; Wever, Nander</creatorcontrib><description>Overview We provide static predictions of net snow accumulation over the Antarctic Ice Sheet derived using a machine learning approach. Here, we train random forest models to predict variability in net accumulation using atmospheric variables and topographic characteristics as predictors at 1 km resolution. Observations of net snow accumulation from both in situ and airborne radar data provide the input observable targets needed to train the random forest models. The data file includes all the predictors and predictands, an independent stake transect used for evaluation, four random forest gridded accumulation anomalies and their uncertainties, and a combined accumulation anomalies and its uncertainty. For a thorough description of how the predictions were generated generated see Medley et al. (2022).</description><identifier>DOI: 10.5281/zenodo.7105854</identifier><language>eng</language><publisher>Zenodo</publisher><subject>Antarctica ; ICESat-2 ; MERRA-2 ; Snow Accumulation</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9838-3665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.7105854$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Medley, Brooke</creatorcontrib><creatorcontrib>Lenaerts, Jan T. M.</creatorcontrib><creatorcontrib>Dattler, Marissa</creatorcontrib><creatorcontrib>Dattler, Eric</creatorcontrib><creatorcontrib>Wever, Nander</creatorcontrib><title>1-km Antarctic net snow accumulation predictions</title><description>Overview We provide static predictions of net snow accumulation over the Antarctic Ice Sheet derived using a machine learning approach. Here, we train random forest models to predict variability in net accumulation using atmospheric variables and topographic characteristics as predictors at 1 km resolution. Observations of net snow accumulation from both in situ and airborne radar data provide the input observable targets needed to train the random forest models. The data file includes all the predictors and predictands, an independent stake transect used for evaluation, four random forest gridded accumulation anomalies and their uncertainties, and a combined accumulation anomalies and its uncertainty. For a thorough description of how the predictions were generated generated see Medley et al. (2022).</description><subject>Antarctica</subject><subject>ICESat-2</subject><subject>MERRA-2</subject><subject>Snow Accumulation</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotzztrwzAUhmEtHUratbP-gN2jm6UzhtAbBLpkF8e6gEgsB1uhtL--hGT63umDh7EXAb2RTrz-pTrHubcCjDP6kYHojhPf1kZLaCXwmhpf6_zDKYTLdDlRK3Pl5yXFEq65PrGHTKc1Pd93ww7vb4fdZ7f__vjabfddtKi7nKNB1KQQorNKohY4ZFBaAWpLIPRorR2NczJHzIMYQQ7aJpIZCbNRG9bfbiM1CqUlf17KRMuvF-CvEn-T-LtE_QNGz0HF</recordid><startdate>20220922</startdate><enddate>20220922</enddate><creator>Medley, Brooke</creator><creator>Lenaerts, Jan T. M.</creator><creator>Dattler, Marissa</creator><creator>Dattler, Eric</creator><creator>Wever, Nander</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-9838-3665</orcidid></search><sort><creationdate>20220922</creationdate><title>1-km Antarctic net snow accumulation predictions</title><author>Medley, Brooke ; Lenaerts, Jan T. M. ; Dattler, Marissa ; Dattler, Eric ; Wever, Nander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d794-ffd5994a390d873294196f03430947a014b777b5882fd9f61b02647ea2f9a9f53</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antarctica</topic><topic>ICESat-2</topic><topic>MERRA-2</topic><topic>Snow Accumulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Medley, Brooke</creatorcontrib><creatorcontrib>Lenaerts, Jan T. M.</creatorcontrib><creatorcontrib>Dattler, Marissa</creatorcontrib><creatorcontrib>Dattler, Eric</creatorcontrib><creatorcontrib>Wever, Nander</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Medley, Brooke</au><au>Lenaerts, Jan T. M.</au><au>Dattler, Marissa</au><au>Dattler, Eric</au><au>Wever, Nander</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>1-km Antarctic net snow accumulation predictions</title><date>2022-09-22</date><risdate>2022</risdate><abstract>Overview We provide static predictions of net snow accumulation over the Antarctic Ice Sheet derived using a machine learning approach. Here, we train random forest models to predict variability in net accumulation using atmospheric variables and topographic characteristics as predictors at 1 km resolution. Observations of net snow accumulation from both in situ and airborne radar data provide the input observable targets needed to train the random forest models. The data file includes all the predictors and predictands, an independent stake transect used for evaluation, four random forest gridded accumulation anomalies and their uncertainties, and a combined accumulation anomalies and its uncertainty. For a thorough description of how the predictions were generated generated see Medley et al. (2022).</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.7105854</doi><orcidid>https://orcid.org/0000-0002-9838-3665</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.7105854
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_7105854
source DataCite
subjects Antarctica
ICESat-2
MERRA-2
Snow Accumulation
title 1-km Antarctic net snow accumulation predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Medley,%20Brooke&rft.date=2022-09-22&rft_id=info:doi/10.5281/zenodo.7105854&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_7105854%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true