UrbanOccupationsOETR_Generalkarte_DCNN_dataset

The UrbanOccupationsOETR_Generalkarte_DCNN_dataset is the dataset that contains sample material for Road Type Automatic Feature Extraction analysis based on the Generalkarte Historical Transport Map. We provide 500 images per road type divided into a separate training and validation folder. In addit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Can, Yekta Said, Gerrits, Piet, Erdem, Kabadayı M.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Can, Yekta Said
Gerrits, Piet
Erdem, Kabadayı M.
description The UrbanOccupationsOETR_Generalkarte_DCNN_dataset is the dataset that contains sample material for Road Type Automatic Feature Extraction analysis based on the Generalkarte Historical Transport Map. We provide 500 images per road type divided into a separate training and validation folder. In addition, all images and labels are divided by their respective labelled road type sub-category. If you would like to use the dataset below in further publication, please use the credentials specified below: Can, Yekta Said, Petrus Johannes Gerrits, and M. Erdem Kabadayi, ‘Automatic Detection of Road Types From the Third Military Mapping Survey of Austria-Hungary Historical Map Series With Deep Convolutional Neural Networks’, IEEE Access 9 (2021): 62847–56, https://doi.org/10.1109/ACCESS.2021.3074897. Please contact mkabadayi@ku.edu.tr for questions regarding the DCNN dataset.
doi_str_mv 10.5281/zenodo.7073746
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_7073746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_7073746</sourcerecordid><originalsourceid>FETCH-LOGICAL-d796-a62b819d983a23489a1327eaea232f5f9a4392a04f56ef984eae77a4643a1d2f3</originalsourceid><addsrcrecordid>eNotj00LgkAYhPfSIapr_0JzP9yPY9gnRELYeXlz3wXJVFY71K_PqNMwDMzMQ8iSJnHKNF29sWldG6tEcSXklMTXcIMmL8tnB0PVNn2-LS52jw0GqO8QBrSb7Hy2DgbocZiTiYe6x8VfZ6TYbYvsEJ3y_TFbnyKnjIxAspumxhnNgXGhDVDOFAKOjvnUGxDcMEiETyV6o8UYKQVCCg7UMc9nJP7VfmfLajzRheoB4WVpYr8c9sdh_xz8AzdyQjE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>UrbanOccupationsOETR_Generalkarte_DCNN_dataset</title><source>DataCite</source><creator>Can, Yekta Said ; Gerrits, Piet ; Erdem, Kabadayı M.</creator><creatorcontrib>Can, Yekta Said ; Gerrits, Piet ; Erdem, Kabadayı M.</creatorcontrib><description>The UrbanOccupationsOETR_Generalkarte_DCNN_dataset is the dataset that contains sample material for Road Type Automatic Feature Extraction analysis based on the Generalkarte Historical Transport Map. We provide 500 images per road type divided into a separate training and validation folder. In addition, all images and labels are divided by their respective labelled road type sub-category. If you would like to use the dataset below in further publication, please use the credentials specified below: Can, Yekta Said, Petrus Johannes Gerrits, and M. Erdem Kabadayi, ‘Automatic Detection of Road Types From the Third Military Mapping Survey of Austria-Hungary Historical Map Series With Deep Convolutional Neural Networks’, IEEE Access 9 (2021): 62847–56, https://doi.org/10.1109/ACCESS.2021.3074897. Please contact mkabadayi@ku.edu.tr for questions regarding the DCNN dataset.</description><identifier>DOI: 10.5281/zenodo.7073746</identifier><language>eng</language><publisher>Zenodo</publisher><subject>CNN, deep learning, historical maps, computer vision</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3206-0190 ; 0000-0002-6614-0183 ; 0000-0001-5808-0144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.7073746$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Can, Yekta Said</creatorcontrib><creatorcontrib>Gerrits, Piet</creatorcontrib><creatorcontrib>Erdem, Kabadayı M.</creatorcontrib><title>UrbanOccupationsOETR_Generalkarte_DCNN_dataset</title><description>The UrbanOccupationsOETR_Generalkarte_DCNN_dataset is the dataset that contains sample material for Road Type Automatic Feature Extraction analysis based on the Generalkarte Historical Transport Map. We provide 500 images per road type divided into a separate training and validation folder. In addition, all images and labels are divided by their respective labelled road type sub-category. If you would like to use the dataset below in further publication, please use the credentials specified below: Can, Yekta Said, Petrus Johannes Gerrits, and M. Erdem Kabadayi, ‘Automatic Detection of Road Types From the Third Military Mapping Survey of Austria-Hungary Historical Map Series With Deep Convolutional Neural Networks’, IEEE Access 9 (2021): 62847–56, https://doi.org/10.1109/ACCESS.2021.3074897. Please contact mkabadayi@ku.edu.tr for questions regarding the DCNN dataset.</description><subject>CNN, deep learning, historical maps, computer vision</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotj00LgkAYhPfSIapr_0JzP9yPY9gnRELYeXlz3wXJVFY71K_PqNMwDMzMQ8iSJnHKNF29sWldG6tEcSXklMTXcIMmL8tnB0PVNn2-LS52jw0GqO8QBrSb7Hy2DgbocZiTiYe6x8VfZ6TYbYvsEJ3y_TFbnyKnjIxAspumxhnNgXGhDVDOFAKOjvnUGxDcMEiETyV6o8UYKQVCCg7UMc9nJP7VfmfLajzRheoB4WVpYr8c9sdh_xz8AzdyQjE</recordid><startdate>20220913</startdate><enddate>20220913</enddate><creator>Can, Yekta Said</creator><creator>Gerrits, Piet</creator><creator>Erdem, Kabadayı M.</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-3206-0190</orcidid><orcidid>https://orcid.org/0000-0002-6614-0183</orcidid><orcidid>https://orcid.org/0000-0001-5808-0144</orcidid></search><sort><creationdate>20220913</creationdate><title>UrbanOccupationsOETR_Generalkarte_DCNN_dataset</title><author>Can, Yekta Said ; Gerrits, Piet ; Erdem, Kabadayı M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d796-a62b819d983a23489a1327eaea232f5f9a4392a04f56ef984eae77a4643a1d2f3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CNN, deep learning, historical maps, computer vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Can, Yekta Said</creatorcontrib><creatorcontrib>Gerrits, Piet</creatorcontrib><creatorcontrib>Erdem, Kabadayı M.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Can, Yekta Said</au><au>Gerrits, Piet</au><au>Erdem, Kabadayı M.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>UrbanOccupationsOETR_Generalkarte_DCNN_dataset</title><date>2022-09-13</date><risdate>2022</risdate><abstract>The UrbanOccupationsOETR_Generalkarte_DCNN_dataset is the dataset that contains sample material for Road Type Automatic Feature Extraction analysis based on the Generalkarte Historical Transport Map. We provide 500 images per road type divided into a separate training and validation folder. In addition, all images and labels are divided by their respective labelled road type sub-category. If you would like to use the dataset below in further publication, please use the credentials specified below: Can, Yekta Said, Petrus Johannes Gerrits, and M. Erdem Kabadayi, ‘Automatic Detection of Road Types From the Third Military Mapping Survey of Austria-Hungary Historical Map Series With Deep Convolutional Neural Networks’, IEEE Access 9 (2021): 62847–56, https://doi.org/10.1109/ACCESS.2021.3074897. Please contact mkabadayi@ku.edu.tr for questions regarding the DCNN dataset.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.7073746</doi><orcidid>https://orcid.org/0000-0003-3206-0190</orcidid><orcidid>https://orcid.org/0000-0002-6614-0183</orcidid><orcidid>https://orcid.org/0000-0001-5808-0144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.7073746
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_7073746
source DataCite
subjects CNN, deep learning, historical maps, computer vision
title UrbanOccupationsOETR_Generalkarte_DCNN_dataset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Can,%20Yekta%20Said&rft.date=2022-09-13&rft_id=info:doi/10.5281/zenodo.7073746&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_7073746%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true