Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils

This repository contains all necessary raw data as well as the R code used to conduct statistical analysis and create figures of the publication   Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils Julia Schroeder1, Tino Peplau1, Frank Pennekamp2, Edward Grego...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schroeder, Julia, Peplau, Tino, Pennekamp, Frank, Gregorich, Edward, Tebbe, Christoph C., Poeplau, Christopher
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Schroeder, Julia
Peplau, Tino
Pennekamp, Frank
Gregorich, Edward
Tebbe, Christoph C.
Poeplau, Christopher
description This repository contains all necessary raw data as well as the R code used to conduct statistical analysis and create figures of the publication   Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils Julia Schroeder1, Tino Peplau1, Frank Pennekamp2, Edward Gregorich3, Christoph C. Tebbe4, Christopher Poeplau1 1 Thünen Institute of Climate-Smart Agriculture, Bundesallee 68, 38116 Braunschweig, Germany 2 Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland 3 Research and Development Centre, Central Experimental Farm, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6, Canada 4 Thünen Institute of Biodiversity, Bundesallee 65, 38116 Braunschweig, Germany DOI: https://doi.org/10.1007/s00374-022-01669-2  This study investigated how and  through which pathways deforestation and conversion to agricultural land (i.e. grassland, cropland) alters the microbial carbon use efficiency (CUE) in subarctic soils to allow the development of mitigation strategies to alleviate C losses. We assessed CUE using 18O-labelled water in a paired-plot approach on soils collected from 19 farms across the subarctic region of Yukon, Canada, comprising 14 pairs of forest-to-grassland conversion and 15 pairs of forest-to-cropland conversion. Microbial CUE significantly increased following conversion to grassland and cropland. Land-use conversion resulted in a lower estimated abundance of fungi, while the archaeal abundance increased, as assessed by qPCR. Interestingly, structural equation modelling revealed that increases in CUE were mediated by a rise in soil pH and a decrease in soil C:N ratio rather than by shifts in microbial community composition, i.e. the ratio of fungi, bacteria and archaea. Our findings indicate a direct control of abiotic factors on microbial CUE via improved nutrient availability and facilitated conditions for microbial growth. The R code was developed under R v3.6.3 and adapted to work under version R v.4.1.2. The repository includes the following files: general_soil_parameters_per_site.csv - general soil data assessed on pooled reference forest plot (n=19) general_soil_parameters_per_plot.csv - general soil data assessed on pooled replicated field samples (n=48) sample_data.csv - data measured for each laboratory sample (n=147)   Land-use change effects on 18O-CUE.Rproj - Rproject (load project to work on provided scri
doi_str_mv 10.5281/zenodo.6720274
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_6720274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_6720274</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_67202743</originalsourceid><addsrcrecordid>eNqVjjsOwjAQBd1QIKCl9gUISfiEno84ABWNtdms0UqOjdZ2EU5PEFyA6r1iRhqlllVZ7OpDtX6RD10o9k1d1s12qu4nskEoJkgcvB6_hocwZpeykGaPQhAp6p5RQsvgNIK0I5ojabKWkcnjMJI65hYEE6OOgV2cq4kFF2nx25kqLufb8brqIAFyIvMU7kEGU5XmE2e-ceYXt_lbeAN-FkuQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils</title><source>DataCite</source><creator>Schroeder, Julia ; Peplau, Tino ; Pennekamp, Frank ; Gregorich, Edward ; Tebbe, Christoph C. ; Poeplau, Christopher</creator><creatorcontrib>Schroeder, Julia ; Peplau, Tino ; Pennekamp, Frank ; Gregorich, Edward ; Tebbe, Christoph C. ; Poeplau, Christopher</creatorcontrib><description>This repository contains all necessary raw data as well as the R code used to conduct statistical analysis and create figures of the publication   Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils Julia Schroeder1, Tino Peplau1, Frank Pennekamp2, Edward Gregorich3, Christoph C. Tebbe4, Christopher Poeplau1 1 Thünen Institute of Climate-Smart Agriculture, Bundesallee 68, 38116 Braunschweig, Germany 2 Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland 3 Research and Development Centre, Central Experimental Farm, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6, Canada 4 Thünen Institute of Biodiversity, Bundesallee 65, 38116 Braunschweig, Germany DOI: https://doi.org/10.1007/s00374-022-01669-2  This study investigated how and  through which pathways deforestation and conversion to agricultural land (i.e. grassland, cropland) alters the microbial carbon use efficiency (CUE) in subarctic soils to allow the development of mitigation strategies to alleviate C losses. We assessed CUE using 18O-labelled water in a paired-plot approach on soils collected from 19 farms across the subarctic region of Yukon, Canada, comprising 14 pairs of forest-to-grassland conversion and 15 pairs of forest-to-cropland conversion. Microbial CUE significantly increased following conversion to grassland and cropland. Land-use conversion resulted in a lower estimated abundance of fungi, while the archaeal abundance increased, as assessed by qPCR. Interestingly, structural equation modelling revealed that increases in CUE were mediated by a rise in soil pH and a decrease in soil C:N ratio rather than by shifts in microbial community composition, i.e. the ratio of fungi, bacteria and archaea. Our findings indicate a direct control of abiotic factors on microbial CUE via improved nutrient availability and facilitated conditions for microbial growth. The R code was developed under R v3.6.3 and adapted to work under version R v.4.1.2. The repository includes the following files: general_soil_parameters_per_site.csv - general soil data assessed on pooled reference forest plot (n=19) general_soil_parameters_per_plot.csv - general soil data assessed on pooled replicated field samples (n=48) sample_data.csv - data measured for each laboratory sample (n=147)   Land-use change effects on 18O-CUE.Rproj - Rproject (load project to work on provided scripts and data) load_data_script.R - loads required data Multivariate_normality_script.R - tests for multivariate normaility in dataset PCA_script.R - calculates PC1 and 2 of clay mineralogy data to reduce dimensions map_Yukon_script.R - create Figure 1 plot_density_script.R - create Figure 2 linear_mixed-effects_models_script.R - calculates response ratios plot_boxplots_script.R - plot boxplots per land use including compact letter display indicating significant differences, create Figure 3 + 4 correlogram_script.R - correlation analysis to identify drivers of CUE, create Figure 6 plot_correlations_script.R - plot drivers of CUE, create Figure 5 + 7 SEM_script.R - development of structural equation model, create Figure 8</description><identifier>DOI: 10.5281/zenodo.6720274</identifier><language>eng</language><publisher>Zenodo</publisher><subject>18O-labelling method ; archaea ; Climate change ; fungi ; land-use change ; soil ; structural equation modelling ; subarctic</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3108-8810 ; 0000-0003-3625-104X ; 0000-0003-0679-1045 ; 0000-0003-4861-0214 ; 0000-0001-7181-7331 ; 0000-0003-3652-2946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1893</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.6720274$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Schroeder, Julia</creatorcontrib><creatorcontrib>Peplau, Tino</creatorcontrib><creatorcontrib>Pennekamp, Frank</creatorcontrib><creatorcontrib>Gregorich, Edward</creatorcontrib><creatorcontrib>Tebbe, Christoph C.</creatorcontrib><creatorcontrib>Poeplau, Christopher</creatorcontrib><title>Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils</title><description>This repository contains all necessary raw data as well as the R code used to conduct statistical analysis and create figures of the publication   Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils Julia Schroeder1, Tino Peplau1, Frank Pennekamp2, Edward Gregorich3, Christoph C. Tebbe4, Christopher Poeplau1 1 Thünen Institute of Climate-Smart Agriculture, Bundesallee 68, 38116 Braunschweig, Germany 2 Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland 3 Research and Development Centre, Central Experimental Farm, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6, Canada 4 Thünen Institute of Biodiversity, Bundesallee 65, 38116 Braunschweig, Germany DOI: https://doi.org/10.1007/s00374-022-01669-2  This study investigated how and  through which pathways deforestation and conversion to agricultural land (i.e. grassland, cropland) alters the microbial carbon use efficiency (CUE) in subarctic soils to allow the development of mitigation strategies to alleviate C losses. We assessed CUE using 18O-labelled water in a paired-plot approach on soils collected from 19 farms across the subarctic region of Yukon, Canada, comprising 14 pairs of forest-to-grassland conversion and 15 pairs of forest-to-cropland conversion. Microbial CUE significantly increased following conversion to grassland and cropland. Land-use conversion resulted in a lower estimated abundance of fungi, while the archaeal abundance increased, as assessed by qPCR. Interestingly, structural equation modelling revealed that increases in CUE were mediated by a rise in soil pH and a decrease in soil C:N ratio rather than by shifts in microbial community composition, i.e. the ratio of fungi, bacteria and archaea. Our findings indicate a direct control of abiotic factors on microbial CUE via improved nutrient availability and facilitated conditions for microbial growth. The R code was developed under R v3.6.3 and adapted to work under version R v.4.1.2. The repository includes the following files: general_soil_parameters_per_site.csv - general soil data assessed on pooled reference forest plot (n=19) general_soil_parameters_per_plot.csv - general soil data assessed on pooled replicated field samples (n=48) sample_data.csv - data measured for each laboratory sample (n=147)   Land-use change effects on 18O-CUE.Rproj - Rproject (load project to work on provided scripts and data) load_data_script.R - loads required data Multivariate_normality_script.R - tests for multivariate normaility in dataset PCA_script.R - calculates PC1 and 2 of clay mineralogy data to reduce dimensions map_Yukon_script.R - create Figure 1 plot_density_script.R - create Figure 2 linear_mixed-effects_models_script.R - calculates response ratios plot_boxplots_script.R - plot boxplots per land use including compact letter display indicating significant differences, create Figure 3 + 4 correlogram_script.R - correlation analysis to identify drivers of CUE, create Figure 6 plot_correlations_script.R - plot drivers of CUE, create Figure 5 + 7 SEM_script.R - development of structural equation model, create Figure 8</description><subject>18O-labelling method</subject><subject>archaea</subject><subject>Climate change</subject><subject>fungi</subject><subject>land-use change</subject><subject>soil</subject><subject>structural equation modelling</subject><subject>subarctic</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjjsOwjAQBd1QIKCl9gUISfiEno84ABWNtdms0UqOjdZ2EU5PEFyA6r1iRhqlllVZ7OpDtX6RD10o9k1d1s12qu4nskEoJkgcvB6_hocwZpeykGaPQhAp6p5RQsvgNIK0I5ojabKWkcnjMJI65hYEE6OOgV2cq4kFF2nx25kqLufb8brqIAFyIvMU7kEGU5XmE2e-ceYXt_lbeAN-FkuQ</recordid><startdate>20220831</startdate><enddate>20220831</enddate><creator>Schroeder, Julia</creator><creator>Peplau, Tino</creator><creator>Pennekamp, Frank</creator><creator>Gregorich, Edward</creator><creator>Tebbe, Christoph C.</creator><creator>Poeplau, Christopher</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-3108-8810</orcidid><orcidid>https://orcid.org/0000-0003-3625-104X</orcidid><orcidid>https://orcid.org/0000-0003-0679-1045</orcidid><orcidid>https://orcid.org/0000-0003-4861-0214</orcidid><orcidid>https://orcid.org/0000-0001-7181-7331</orcidid><orcidid>https://orcid.org/0000-0003-3652-2946</orcidid></search><sort><creationdate>20220831</creationdate><title>Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils</title><author>Schroeder, Julia ; Peplau, Tino ; Pennekamp, Frank ; Gregorich, Edward ; Tebbe, Christoph C. ; Poeplau, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_67202743</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>18O-labelling method</topic><topic>archaea</topic><topic>Climate change</topic><topic>fungi</topic><topic>land-use change</topic><topic>soil</topic><topic>structural equation modelling</topic><topic>subarctic</topic><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Julia</creatorcontrib><creatorcontrib>Peplau, Tino</creatorcontrib><creatorcontrib>Pennekamp, Frank</creatorcontrib><creatorcontrib>Gregorich, Edward</creatorcontrib><creatorcontrib>Tebbe, Christoph C.</creatorcontrib><creatorcontrib>Poeplau, Christopher</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schroeder, Julia</au><au>Peplau, Tino</au><au>Pennekamp, Frank</au><au>Gregorich, Edward</au><au>Tebbe, Christoph C.</au><au>Poeplau, Christopher</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils</title><date>2022-08-31</date><risdate>2022</risdate><abstract>This repository contains all necessary raw data as well as the R code used to conduct statistical analysis and create figures of the publication   Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils Julia Schroeder1, Tino Peplau1, Frank Pennekamp2, Edward Gregorich3, Christoph C. Tebbe4, Christopher Poeplau1 1 Thünen Institute of Climate-Smart Agriculture, Bundesallee 68, 38116 Braunschweig, Germany 2 Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland 3 Research and Development Centre, Central Experimental Farm, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6, Canada 4 Thünen Institute of Biodiversity, Bundesallee 65, 38116 Braunschweig, Germany DOI: https://doi.org/10.1007/s00374-022-01669-2  This study investigated how and  through which pathways deforestation and conversion to agricultural land (i.e. grassland, cropland) alters the microbial carbon use efficiency (CUE) in subarctic soils to allow the development of mitigation strategies to alleviate C losses. We assessed CUE using 18O-labelled water in a paired-plot approach on soils collected from 19 farms across the subarctic region of Yukon, Canada, comprising 14 pairs of forest-to-grassland conversion and 15 pairs of forest-to-cropland conversion. Microbial CUE significantly increased following conversion to grassland and cropland. Land-use conversion resulted in a lower estimated abundance of fungi, while the archaeal abundance increased, as assessed by qPCR. Interestingly, structural equation modelling revealed that increases in CUE were mediated by a rise in soil pH and a decrease in soil C:N ratio rather than by shifts in microbial community composition, i.e. the ratio of fungi, bacteria and archaea. Our findings indicate a direct control of abiotic factors on microbial CUE via improved nutrient availability and facilitated conditions for microbial growth. The R code was developed under R v3.6.3 and adapted to work under version R v.4.1.2. The repository includes the following files: general_soil_parameters_per_site.csv - general soil data assessed on pooled reference forest plot (n=19) general_soil_parameters_per_plot.csv - general soil data assessed on pooled replicated field samples (n=48) sample_data.csv - data measured for each laboratory sample (n=147)   Land-use change effects on 18O-CUE.Rproj - Rproject (load project to work on provided scripts and data) load_data_script.R - loads required data Multivariate_normality_script.R - tests for multivariate normaility in dataset PCA_script.R - calculates PC1 and 2 of clay mineralogy data to reduce dimensions map_Yukon_script.R - create Figure 1 plot_density_script.R - create Figure 2 linear_mixed-effects_models_script.R - calculates response ratios plot_boxplots_script.R - plot boxplots per land use including compact letter display indicating significant differences, create Figure 3 + 4 correlogram_script.R - correlation analysis to identify drivers of CUE, create Figure 6 plot_correlations_script.R - plot drivers of CUE, create Figure 5 + 7 SEM_script.R - development of structural equation model, create Figure 8</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.6720274</doi><orcidid>https://orcid.org/0000-0003-3108-8810</orcidid><orcidid>https://orcid.org/0000-0003-3625-104X</orcidid><orcidid>https://orcid.org/0000-0003-0679-1045</orcidid><orcidid>https://orcid.org/0000-0003-4861-0214</orcidid><orcidid>https://orcid.org/0000-0001-7181-7331</orcidid><orcidid>https://orcid.org/0000-0003-3652-2946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.6720274
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_6720274
source DataCite
subjects 18O-labelling method
archaea
Climate change
fungi
land-use change
soil
structural equation modelling
subarctic
title Deforestation for agriculture increases microbial carbon use efficiency in subarctic soils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Schroeder,%20Julia&rft.date=2022-08-31&rft_id=info:doi/10.5281/zenodo.6720274&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_6720274%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true