GRIDCERF: Geospatial Raster Input Data for Capacity Expansion Regional Feasibility

Climate change, energy system transitions, and socioeconomic change are compounding influences affecting the growth of electricity demand. While energy efficiency initiatives and distributed resources can address a significant amount of this demand, the United States will likely still need new utili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vernon, C. R., Mongird, K., Nelson, K., Rice, J. S.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vernon, C. R.
Mongird, K.
Nelson, K.
Rice, J. S.
description Climate change, energy system transitions, and socioeconomic change are compounding influences affecting the growth of electricity demand. While energy efficiency initiatives and distributed resources can address a significant amount of this demand, the United States will likely still need new utility-scale generation resources. The energy sector uses capacity expansion planning models to determine the aggregate need for new generation, but these models are typically at the state or regional scale and are not equipped to address the wide range of location- and technology-specific issues that are increasingly a factor in power plant siting. To help address these challenges, we have developed the Geospatial Raster Input Data for Capacity Expansion Regional Feasibility (GRIDCERF) data package, a high-resolution product to evaluate siting suitability for renewable and non-renewable power plants in the conterminous United States. GRIDCERF offers 265 suitability layers for use with 56 power plant technology configurations in a harmonized format that can be easily ingested by geospatially-enabled modeling software. It also provides pre-compiled technology-specific suitability layers and allows for user customization to robustly address science objectives when evaluating varying future conditions. Accompanying GitHub repository: The following GitHub repository contains the code used to generate the data in this archive:  https://github.com/IMMM-SFA/vernon-etal_2023_scidata Contents: Note: GRIDCERF does not provide the source data directly due to some license restrictions related for direct redistribution of the unaltered source data.  However, the included file "gridcerf_source_data_description.csv" details the provenance associated with each source dataset and notes their individual licenses/disclaimers. Common Rasters: Suitability Layer Type and Source GRIDCERF Raster Name Bureau of Land Management (BLM) Surface Management Agency Areas33 gridcerf_blm_surface_management_agency_areas.tif BLM National Landscape Conservation System (NLCS) - National Monuments34 gridcerf_blm_nlcs_national_monument_conus.tif BLM NLCS - Outstanding Natural Areas35 gridcerf_blm_nlcs_outstanding_natural_areas_conus.tif BLM NLCS - Wilderness36 gridcerf_blm_nlcs_wilderness_conus.tif BLM NLCS - Wilderness Study Areas37 gridcerf_blm_nlcs_wilderness_study_areas_conus.tif National Park Service (NPS) Class 1 airsheds38 gridcerf_class1_airsheds_conus.tif NPS Administrative Boundaries39 gridcerf_
doi_str_mv 10.5281/zenodo.6601789
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_6601789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_6601789</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_66017893</originalsourceid><addsrcrecordid>eNqVjr0KwjAURrM4iLo63xewNoq1uvZP1-AervZWAjUJSQTr0xuxL-B0ho_zcRhb8jTZbXK-fpM2rUmyLOX7_DBlohHnsqhEfYSGjLcYFPYg0AdycNb2GaDEgNAZBwVavKkwQPWyqL0yGgTdI6JRE3p1VX2c52zSYe9pMXLGkrq6FKdVG4-iT9I69UA3SJ7Kb5T8Rckxavu38AFyLkaL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>GRIDCERF: Geospatial Raster Input Data for Capacity Expansion Regional Feasibility</title><source>DataCite</source><creator>Vernon, C. R. ; Mongird, K. ; Nelson, K. ; Rice, J. S.</creator><creatorcontrib>Vernon, C. R. ; Mongird, K. ; Nelson, K. ; Rice, J. S.</creatorcontrib><description>Climate change, energy system transitions, and socioeconomic change are compounding influences affecting the growth of electricity demand. While energy efficiency initiatives and distributed resources can address a significant amount of this demand, the United States will likely still need new utility-scale generation resources. The energy sector uses capacity expansion planning models to determine the aggregate need for new generation, but these models are typically at the state or regional scale and are not equipped to address the wide range of location- and technology-specific issues that are increasingly a factor in power plant siting. To help address these challenges, we have developed the Geospatial Raster Input Data for Capacity Expansion Regional Feasibility (GRIDCERF) data package, a high-resolution product to evaluate siting suitability for renewable and non-renewable power plants in the conterminous United States. GRIDCERF offers 265 suitability layers for use with 56 power plant technology configurations in a harmonized format that can be easily ingested by geospatially-enabled modeling software. It also provides pre-compiled technology-specific suitability layers and allows for user customization to robustly address science objectives when evaluating varying future conditions. Accompanying GitHub repository: The following GitHub repository contains the code used to generate the data in this archive:  https://github.com/IMMM-SFA/vernon-etal_2023_scidata Contents: Note: GRIDCERF does not provide the source data directly due to some license restrictions related for direct redistribution of the unaltered source data.  However, the included file "gridcerf_source_data_description.csv" details the provenance associated with each source dataset and notes their individual licenses/disclaimers. Common Rasters: Suitability Layer Type and Source GRIDCERF Raster Name Bureau of Land Management (BLM) Surface Management Agency Areas33 gridcerf_blm_surface_management_agency_areas.tif BLM National Landscape Conservation System (NLCS) - National Monuments34 gridcerf_blm_nlcs_national_monument_conus.tif BLM NLCS - Outstanding Natural Areas35 gridcerf_blm_nlcs_outstanding_natural_areas_conus.tif BLM NLCS - Wilderness36 gridcerf_blm_nlcs_wilderness_conus.tif BLM NLCS - Wilderness Study Areas37 gridcerf_blm_nlcs_wilderness_study_areas_conus.tif National Park Service (NPS) Class 1 airsheds38 gridcerf_class1_airsheds_conus.tif NPS Administrative Boundaries39 gridcerf_nps_administrative_boundaries_conus.tif NPS Historic Trails40 gridcerf_nps_historic_trails_conus.tif NPS Scenic Trails41 gridcerf_nps_scenic_trails_conus.tif U.S. Fish and Wildlife Service (USFWS) - Critical Habitat42 gridcerf_usfws_critical_habitat_conus.tif USFWS - Special Designation43 gridcerf_usfws_special_designation_conus.tif USFWS - Wild and Scenic River System44 gridcerf_usfws_national_wild_scenic_river_system_conus.tif USFWS - National Realty Tracts45 gridcerf_usfws_national_realty_tracts_conus.tif National Land Cover Dataset (NLCD) Wetlands46 gridcerf_nlcd_wetlands_conus.tif U.S. Forest Service (USFS) Administrative Boundaries47 gridcerf_usfs_administrative_boundaries_conus.tif USFS Wilderness Areas48 gridcerf_usfs_wilderness_areas_conus.tif U.S. Geological Survey (USGS) National Wilderness Lands49 gridcerf_usgs_wilderness_areas_conus.tif USGS Protected Areas of the U.S - Class 1&amp;250 gridcerf_usgs_padus_class_1_to_2_conus.tif U.S. State Protected Lands51 gridcerf_wdpa_state_protected_lands_conus.tif Nature Conservancy lands52 gridcerf_wdpa_tnc_managed_lands_conus.tif   Technology-specific Rasters: Suitability Layer Type and Source GRIDCERF Raster Name Bureau of Indian Affairs (BIA) Land Area Representations Dataset53 gridcerf_bia_land_area_representations_conus.tif Slope 5% or less suitable20 gridcerf_srtm_slope_5pct_or_less.tif Slope 10% or less suitable20 gridcerf_srtm_slope_10pct_or_less.tif Slope 12% or less suitable20 gridcerf_srtm_slope_12pct_or_less.tif Slope 20% or less suitable20 gridcerf_srtm_slope_20pct_or_less.tif Airports (10-mile buffer)54 gridcerf_airports_10mi_buffer_conus.tif Airports (3-mile buffer)54 gridcerf_airports_3mi_buffer_conus.tif Proximity to Railroad and Navigable Waters (&lt; 5 km) 55,56 gridcerf_usdot_railnodes_navwaters_within5km.tif Coal Supply55–57 gridcerf_coalmines20km_railnodes5km_navwaters5km_conus.tif United States Environmental Protection Agency (EPA) CO Non-attainment Areas58 gridcerf_epa_nonattainment_co_conus.tif EPA NOx Non-attainment Areas58 gridcerf_epa_nonattainment_no2_conus.tif EPA Ozone Non-attainment Areas58 gridcerf_epa_nonattainment_ozone_conus.tif EPA Lead Non-attainment Areas58 gridcerf_epa_nonattainment_lead_conus.tif EPA PM10 Non-attainment Areas58 gridcerf_epa_nonattainment_pm10_conus.tif EPA PM2.5 Non-attainment Areas58 gridcerf_epa_nonattainment_pm2p5_conus.tif EPA SOx Non-attainment Areas58 gridcerf_epa_nonattainment_so2_conus.tif Earthquake Potential59 gridcerf_usgs_earthquake_pga_0.3_at_2pct_in_50yrs_conus.tif Densely population areas11 gridcerf_densely_populated_ssp[2,3,5]_[year].tif Densely population areas buffered by 25 miles11 gridcerf_densely_populated_ssp[2,3,5]_[year]_buff25mi.tif Densely population areas – nuclear11 gridcerf_densely_populated_ssp[2,3,5]_[year]_nuclear.tif National Hydrography Dataset (version 2; NHDv2)32 gridcerf_nhd2plus_surfaceflow_greaterthan[bin]mgd_buffer20km.tif National Renewable Energy Laboratory (NREL) concentrating solar direct normal potential26 gridcerf_nrel_solar_csp_centralized_potential.tif NREL photovoltaic potential26 gridcerf_nrel_solar_pv_centralized_potential.tif NREL Wind Integration National Dataset (WIND) toolkit22 gridcerf_nrel_wind_development_potential_hubheight[080,110,140]_cf35.tif   Compiled Technology Rasters: The list of layers that make up each compiled technology raster can be found in the "reference/compiled_layer_configuration.txt" file in this data archive. The following technology raster file names are self-descriptive in the format "gridcerf____.tif".  Some technologies do not have a carbon capture or cooling type designation and will simply have technology specific considerations listed. gridcerf_biomass_conventional_ccs_dry.tif gridcerf_biomass_conventional_ccs_oncethrough.tif gridcerf_biomass_conventional_ccs_recirculating.tif gridcerf_biomass_conventional_no-ccs_dry.tif gridcerf_biomass_conventional_no-ccs_oncethrough.tif gridcerf_biomass_conventional_no-ccs_pond.tif gridcerf_biomass_conventional_no-ccs_recirculating.tif gridcerf_biomass_igcc_no-ccs_dry.tif gridcerf_biomass_igcc_no-ccs_oncethrough.tif gridcerf_biomass_igcc_no-ccs_recirculating.tif gridcerf_biomass_igcc_with-ccs_dry.tif gridcerf_biomass_igcc_with-ccs_oncethrough.tif gridcerf_biomass_igcc_with-ccs_recirculating.tif gridcerf_coal_conventional_ccs_dry.tif gridcerf_coal_conventional_ccs_oncethrough.tif gridcerf_coal_conventional_ccs_recirculating.tif gridcerf_coal_conventional_no-ccs_dry.tif gridcerf_coal_conventional_no-ccs_oncethrough.tif gridcerf_coal_conventional_no-ccs_pond.tif gridcerf_coal_conventional_no-ccs_recirculating.tif gridcerf_coal_igcc_no-ccs_dry.tif gridcerf_coal_igcc_no-ccs_oncethrough.tif gridcerf_coal_igcc_no-ccs_recirculating.tif gridcerf_coal_igcc_with-ccs_dry.tif gridcerf_coal_igcc_with-ccs_oncethrough.tif gridcerf_coal_igcc_with-ccs_recirculating.tif gridcerf_gas_cc_ccs_dry.tif gridcerf_gas_cc_ccs_oncethrough.tif gridcerf_gas_cc_ccs_recirculating.tif gridcerf_gas_cc_no-ccs_dry.tif gridcerf_gas_cc_no-ccs_oncethrough.tif gridcerf_gas_cc_no-ccs_pond.tif gridcerf_gas_cc_no-ccs_recirculating.tif gridcerf_gas_turbine_dry.tif gridcerf_gas_turbine_oncethrough.tif gridcerf_gas_turbine_pond.tif gridcerf_gas_turbine_recirculating.tif gridcerf_nuclear_gen3_oncethrough.tif gridcerf_nuclear_gen3_pond.tif gridcerf_nuclear_gen3_recirculating.tif gridcerf_refinedliquids_cc_ccs_dry.tif gridcerf_refinedliquids_cc_ccs_oncethrough.tif gridcerf_refinedliquids_cc_ccs_recirculating.tif gridcerf_refinedliquids_cc_no-ccs_dry.tif gridcerf_refinedliquids_cc_no-ccs_oncethrough.tif gridcerf_refinedliquids_cc_no-ccs_recirculating.tif gridcerf_refinedliquids_ct_dry.tif gridcerf_refinedliquids_ct_oncethrough.tif gridcerf_refinedliquids_ct_pond.tif gridcerf_refinedliquids_ct_recirculating.tif gridcerf_solar_csp_centralized_dry-hybrid.tif gridcerf_solar_csp_centralized_recirculating.tif gridcerf_solar_pv_centralized.tif gridcerf_wind_onshore_hubheight080m.tif gridcerf_wind_onshore_hubheight110m.tif gridcerf_wind_onshore_hubheight140m.tif Reference Data:  Contains land mask and other useful boundary data.  Also contains additional literature review resource and the layers used to build the compiled suitability. References: 1.         Bureau of Land Management. BLM National Surface Management Agency Area Polygons - National Geospatial Data Asset (NGDA). Landscape Approach Data Portal https://gbp-blm-egis.hub.arcgis.com/datasets/blm-national-sma-surface-management-agency-area-polygons/about (2023). 2.         Bureau of Land Management. BLM National NLCS National Monuments, National Conservation Areas and Similar Designations Polygons. U.S.Department of Interior Bureau of Land Management Geospatial Business Plaform https://gbp-blm-egis.hub.arcgis.com/datasets/BLM-EGIS::blm-natl-nlcs-national-monuments-national-conservation-areas-polygons/about (2023). 3.         Hartger, P. NLCS Outstanding Natural Areas. ArcGIS Hub https://hub.arcgis.com/datasets/Wilderness::nlcs-outstanding-natural-areas/about (2017). 4.         Bureau of Land Management. BLM National NLCS Wilderness Areas Polygons. U.S.Department of Interior Bureau of Land Management Geospatial Business Plaform https://arcg.is/a01uC (2023). 5.         Bureau of Land Management. BLM National NLCS Wilderness Study Areas Polygons. U.S.Department of Interior https://arcg.is/14XPiC (2023). 6.         United States Environmental Protection Agency. Mandatory Class 1 Federal Areas Web Service. Mandatory Class 1 Federal Areas Web</description><identifier>DOI: 10.5281/zenodo.6601789</identifier><language>eng</language><publisher>Zenodo</publisher><subject>Capacity Expansion ; Geospatial ; MultiSector Dynamics</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3406-6214 ; 0000-0003-2807-7088 ; 0000-0002-6745-167X ; 0000-0002-7833-9456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.6601789$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vernon, C. R.</creatorcontrib><creatorcontrib>Mongird, K.</creatorcontrib><creatorcontrib>Nelson, K.</creatorcontrib><creatorcontrib>Rice, J. S.</creatorcontrib><title>GRIDCERF: Geospatial Raster Input Data for Capacity Expansion Regional Feasibility</title><description>Climate change, energy system transitions, and socioeconomic change are compounding influences affecting the growth of electricity demand. While energy efficiency initiatives and distributed resources can address a significant amount of this demand, the United States will likely still need new utility-scale generation resources. The energy sector uses capacity expansion planning models to determine the aggregate need for new generation, but these models are typically at the state or regional scale and are not equipped to address the wide range of location- and technology-specific issues that are increasingly a factor in power plant siting. To help address these challenges, we have developed the Geospatial Raster Input Data for Capacity Expansion Regional Feasibility (GRIDCERF) data package, a high-resolution product to evaluate siting suitability for renewable and non-renewable power plants in the conterminous United States. GRIDCERF offers 265 suitability layers for use with 56 power plant technology configurations in a harmonized format that can be easily ingested by geospatially-enabled modeling software. It also provides pre-compiled technology-specific suitability layers and allows for user customization to robustly address science objectives when evaluating varying future conditions. Accompanying GitHub repository: The following GitHub repository contains the code used to generate the data in this archive:  https://github.com/IMMM-SFA/vernon-etal_2023_scidata Contents: Note: GRIDCERF does not provide the source data directly due to some license restrictions related for direct redistribution of the unaltered source data.  However, the included file "gridcerf_source_data_description.csv" details the provenance associated with each source dataset and notes their individual licenses/disclaimers. Common Rasters: Suitability Layer Type and Source GRIDCERF Raster Name Bureau of Land Management (BLM) Surface Management Agency Areas33 gridcerf_blm_surface_management_agency_areas.tif BLM National Landscape Conservation System (NLCS) - National Monuments34 gridcerf_blm_nlcs_national_monument_conus.tif BLM NLCS - Outstanding Natural Areas35 gridcerf_blm_nlcs_outstanding_natural_areas_conus.tif BLM NLCS - Wilderness36 gridcerf_blm_nlcs_wilderness_conus.tif BLM NLCS - Wilderness Study Areas37 gridcerf_blm_nlcs_wilderness_study_areas_conus.tif National Park Service (NPS) Class 1 airsheds38 gridcerf_class1_airsheds_conus.tif NPS Administrative Boundaries39 gridcerf_nps_administrative_boundaries_conus.tif NPS Historic Trails40 gridcerf_nps_historic_trails_conus.tif NPS Scenic Trails41 gridcerf_nps_scenic_trails_conus.tif U.S. Fish and Wildlife Service (USFWS) - Critical Habitat42 gridcerf_usfws_critical_habitat_conus.tif USFWS - Special Designation43 gridcerf_usfws_special_designation_conus.tif USFWS - Wild and Scenic River System44 gridcerf_usfws_national_wild_scenic_river_system_conus.tif USFWS - National Realty Tracts45 gridcerf_usfws_national_realty_tracts_conus.tif National Land Cover Dataset (NLCD) Wetlands46 gridcerf_nlcd_wetlands_conus.tif U.S. Forest Service (USFS) Administrative Boundaries47 gridcerf_usfs_administrative_boundaries_conus.tif USFS Wilderness Areas48 gridcerf_usfs_wilderness_areas_conus.tif U.S. Geological Survey (USGS) National Wilderness Lands49 gridcerf_usgs_wilderness_areas_conus.tif USGS Protected Areas of the U.S - Class 1&amp;250 gridcerf_usgs_padus_class_1_to_2_conus.tif U.S. State Protected Lands51 gridcerf_wdpa_state_protected_lands_conus.tif Nature Conservancy lands52 gridcerf_wdpa_tnc_managed_lands_conus.tif   Technology-specific Rasters: Suitability Layer Type and Source GRIDCERF Raster Name Bureau of Indian Affairs (BIA) Land Area Representations Dataset53 gridcerf_bia_land_area_representations_conus.tif Slope 5% or less suitable20 gridcerf_srtm_slope_5pct_or_less.tif Slope 10% or less suitable20 gridcerf_srtm_slope_10pct_or_less.tif Slope 12% or less suitable20 gridcerf_srtm_slope_12pct_or_less.tif Slope 20% or less suitable20 gridcerf_srtm_slope_20pct_or_less.tif Airports (10-mile buffer)54 gridcerf_airports_10mi_buffer_conus.tif Airports (3-mile buffer)54 gridcerf_airports_3mi_buffer_conus.tif Proximity to Railroad and Navigable Waters (&lt; 5 km) 55,56 gridcerf_usdot_railnodes_navwaters_within5km.tif Coal Supply55–57 gridcerf_coalmines20km_railnodes5km_navwaters5km_conus.tif United States Environmental Protection Agency (EPA) CO Non-attainment Areas58 gridcerf_epa_nonattainment_co_conus.tif EPA NOx Non-attainment Areas58 gridcerf_epa_nonattainment_no2_conus.tif EPA Ozone Non-attainment Areas58 gridcerf_epa_nonattainment_ozone_conus.tif EPA Lead Non-attainment Areas58 gridcerf_epa_nonattainment_lead_conus.tif EPA PM10 Non-attainment Areas58 gridcerf_epa_nonattainment_pm10_conus.tif EPA PM2.5 Non-attainment Areas58 gridcerf_epa_nonattainment_pm2p5_conus.tif EPA SOx Non-attainment Areas58 gridcerf_epa_nonattainment_so2_conus.tif Earthquake Potential59 gridcerf_usgs_earthquake_pga_0.3_at_2pct_in_50yrs_conus.tif Densely population areas11 gridcerf_densely_populated_ssp[2,3,5]_[year].tif Densely population areas buffered by 25 miles11 gridcerf_densely_populated_ssp[2,3,5]_[year]_buff25mi.tif Densely population areas – nuclear11 gridcerf_densely_populated_ssp[2,3,5]_[year]_nuclear.tif National Hydrography Dataset (version 2; NHDv2)32 gridcerf_nhd2plus_surfaceflow_greaterthan[bin]mgd_buffer20km.tif National Renewable Energy Laboratory (NREL) concentrating solar direct normal potential26 gridcerf_nrel_solar_csp_centralized_potential.tif NREL photovoltaic potential26 gridcerf_nrel_solar_pv_centralized_potential.tif NREL Wind Integration National Dataset (WIND) toolkit22 gridcerf_nrel_wind_development_potential_hubheight[080,110,140]_cf35.tif   Compiled Technology Rasters: The list of layers that make up each compiled technology raster can be found in the "reference/compiled_layer_configuration.txt" file in this data archive. The following technology raster file names are self-descriptive in the format "gridcerf____.tif".  Some technologies do not have a carbon capture or cooling type designation and will simply have technology specific considerations listed. gridcerf_biomass_conventional_ccs_dry.tif gridcerf_biomass_conventional_ccs_oncethrough.tif gridcerf_biomass_conventional_ccs_recirculating.tif gridcerf_biomass_conventional_no-ccs_dry.tif gridcerf_biomass_conventional_no-ccs_oncethrough.tif gridcerf_biomass_conventional_no-ccs_pond.tif gridcerf_biomass_conventional_no-ccs_recirculating.tif gridcerf_biomass_igcc_no-ccs_dry.tif gridcerf_biomass_igcc_no-ccs_oncethrough.tif gridcerf_biomass_igcc_no-ccs_recirculating.tif gridcerf_biomass_igcc_with-ccs_dry.tif gridcerf_biomass_igcc_with-ccs_oncethrough.tif gridcerf_biomass_igcc_with-ccs_recirculating.tif gridcerf_coal_conventional_ccs_dry.tif gridcerf_coal_conventional_ccs_oncethrough.tif gridcerf_coal_conventional_ccs_recirculating.tif gridcerf_coal_conventional_no-ccs_dry.tif gridcerf_coal_conventional_no-ccs_oncethrough.tif gridcerf_coal_conventional_no-ccs_pond.tif gridcerf_coal_conventional_no-ccs_recirculating.tif gridcerf_coal_igcc_no-ccs_dry.tif gridcerf_coal_igcc_no-ccs_oncethrough.tif gridcerf_coal_igcc_no-ccs_recirculating.tif gridcerf_coal_igcc_with-ccs_dry.tif gridcerf_coal_igcc_with-ccs_oncethrough.tif gridcerf_coal_igcc_with-ccs_recirculating.tif gridcerf_gas_cc_ccs_dry.tif gridcerf_gas_cc_ccs_oncethrough.tif gridcerf_gas_cc_ccs_recirculating.tif gridcerf_gas_cc_no-ccs_dry.tif gridcerf_gas_cc_no-ccs_oncethrough.tif gridcerf_gas_cc_no-ccs_pond.tif gridcerf_gas_cc_no-ccs_recirculating.tif gridcerf_gas_turbine_dry.tif gridcerf_gas_turbine_oncethrough.tif gridcerf_gas_turbine_pond.tif gridcerf_gas_turbine_recirculating.tif gridcerf_nuclear_gen3_oncethrough.tif gridcerf_nuclear_gen3_pond.tif gridcerf_nuclear_gen3_recirculating.tif gridcerf_refinedliquids_cc_ccs_dry.tif gridcerf_refinedliquids_cc_ccs_oncethrough.tif gridcerf_refinedliquids_cc_ccs_recirculating.tif gridcerf_refinedliquids_cc_no-ccs_dry.tif gridcerf_refinedliquids_cc_no-ccs_oncethrough.tif gridcerf_refinedliquids_cc_no-ccs_recirculating.tif gridcerf_refinedliquids_ct_dry.tif gridcerf_refinedliquids_ct_oncethrough.tif gridcerf_refinedliquids_ct_pond.tif gridcerf_refinedliquids_ct_recirculating.tif gridcerf_solar_csp_centralized_dry-hybrid.tif gridcerf_solar_csp_centralized_recirculating.tif gridcerf_solar_pv_centralized.tif gridcerf_wind_onshore_hubheight080m.tif gridcerf_wind_onshore_hubheight110m.tif gridcerf_wind_onshore_hubheight140m.tif Reference Data:  Contains land mask and other useful boundary data.  Also contains additional literature review resource and the layers used to build the compiled suitability. References: 1.         Bureau of Land Management. BLM National Surface Management Agency Area Polygons - National Geospatial Data Asset (NGDA). Landscape Approach Data Portal https://gbp-blm-egis.hub.arcgis.com/datasets/blm-national-sma-surface-management-agency-area-polygons/about (2023). 2.         Bureau of Land Management. BLM National NLCS National Monuments, National Conservation Areas and Similar Designations Polygons. U.S.Department of Interior Bureau of Land Management Geospatial Business Plaform https://gbp-blm-egis.hub.arcgis.com/datasets/BLM-EGIS::blm-natl-nlcs-national-monuments-national-conservation-areas-polygons/about (2023). 3.         Hartger, P. NLCS Outstanding Natural Areas. ArcGIS Hub https://hub.arcgis.com/datasets/Wilderness::nlcs-outstanding-natural-areas/about (2017). 4.         Bureau of Land Management. BLM National NLCS Wilderness Areas Polygons. U.S.Department of Interior Bureau of Land Management Geospatial Business Plaform https://arcg.is/a01uC (2023). 5.         Bureau of Land Management. BLM National NLCS Wilderness Study Areas Polygons. U.S.Department of Interior https://arcg.is/14XPiC (2023). 6.         United States Environmental Protection Agency. Mandatory Class 1 Federal Areas Web Service. Mandatory Class 1 Federal Areas Web</description><subject>Capacity Expansion</subject><subject>Geospatial</subject><subject>MultiSector Dynamics</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjr0KwjAURrM4iLo63xewNoq1uvZP1-AervZWAjUJSQTr0xuxL-B0ho_zcRhb8jTZbXK-fpM2rUmyLOX7_DBlohHnsqhEfYSGjLcYFPYg0AdycNb2GaDEgNAZBwVavKkwQPWyqL0yGgTdI6JRE3p1VX2c52zSYe9pMXLGkrq6FKdVG4-iT9I69UA3SJ7Kb5T8Rckxavu38AFyLkaL</recordid><startdate>20231025</startdate><enddate>20231025</enddate><creator>Vernon, C. R.</creator><creator>Mongird, K.</creator><creator>Nelson, K.</creator><creator>Rice, J. S.</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-3406-6214</orcidid><orcidid>https://orcid.org/0000-0003-2807-7088</orcidid><orcidid>https://orcid.org/0000-0002-6745-167X</orcidid><orcidid>https://orcid.org/0000-0002-7833-9456</orcidid></search><sort><creationdate>20231025</creationdate><title>GRIDCERF: Geospatial Raster Input Data for Capacity Expansion Regional Feasibility</title><author>Vernon, C. R. ; Mongird, K. ; Nelson, K. ; Rice, J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_66017893</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacity Expansion</topic><topic>Geospatial</topic><topic>MultiSector Dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Vernon, C. R.</creatorcontrib><creatorcontrib>Mongird, K.</creatorcontrib><creatorcontrib>Nelson, K.</creatorcontrib><creatorcontrib>Rice, J. S.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vernon, C. R.</au><au>Mongird, K.</au><au>Nelson, K.</au><au>Rice, J. S.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>GRIDCERF: Geospatial Raster Input Data for Capacity Expansion Regional Feasibility</title><date>2023-10-25</date><risdate>2023</risdate><abstract>Climate change, energy system transitions, and socioeconomic change are compounding influences affecting the growth of electricity demand. While energy efficiency initiatives and distributed resources can address a significant amount of this demand, the United States will likely still need new utility-scale generation resources. The energy sector uses capacity expansion planning models to determine the aggregate need for new generation, but these models are typically at the state or regional scale and are not equipped to address the wide range of location- and technology-specific issues that are increasingly a factor in power plant siting. To help address these challenges, we have developed the Geospatial Raster Input Data for Capacity Expansion Regional Feasibility (GRIDCERF) data package, a high-resolution product to evaluate siting suitability for renewable and non-renewable power plants in the conterminous United States. GRIDCERF offers 265 suitability layers for use with 56 power plant technology configurations in a harmonized format that can be easily ingested by geospatially-enabled modeling software. It also provides pre-compiled technology-specific suitability layers and allows for user customization to robustly address science objectives when evaluating varying future conditions. Accompanying GitHub repository: The following GitHub repository contains the code used to generate the data in this archive:  https://github.com/IMMM-SFA/vernon-etal_2023_scidata Contents: Note: GRIDCERF does not provide the source data directly due to some license restrictions related for direct redistribution of the unaltered source data.  However, the included file "gridcerf_source_data_description.csv" details the provenance associated with each source dataset and notes their individual licenses/disclaimers. Common Rasters: Suitability Layer Type and Source GRIDCERF Raster Name Bureau of Land Management (BLM) Surface Management Agency Areas33 gridcerf_blm_surface_management_agency_areas.tif BLM National Landscape Conservation System (NLCS) - National Monuments34 gridcerf_blm_nlcs_national_monument_conus.tif BLM NLCS - Outstanding Natural Areas35 gridcerf_blm_nlcs_outstanding_natural_areas_conus.tif BLM NLCS - Wilderness36 gridcerf_blm_nlcs_wilderness_conus.tif BLM NLCS - Wilderness Study Areas37 gridcerf_blm_nlcs_wilderness_study_areas_conus.tif National Park Service (NPS) Class 1 airsheds38 gridcerf_class1_airsheds_conus.tif NPS Administrative Boundaries39 gridcerf_nps_administrative_boundaries_conus.tif NPS Historic Trails40 gridcerf_nps_historic_trails_conus.tif NPS Scenic Trails41 gridcerf_nps_scenic_trails_conus.tif U.S. Fish and Wildlife Service (USFWS) - Critical Habitat42 gridcerf_usfws_critical_habitat_conus.tif USFWS - Special Designation43 gridcerf_usfws_special_designation_conus.tif USFWS - Wild and Scenic River System44 gridcerf_usfws_national_wild_scenic_river_system_conus.tif USFWS - National Realty Tracts45 gridcerf_usfws_national_realty_tracts_conus.tif National Land Cover Dataset (NLCD) Wetlands46 gridcerf_nlcd_wetlands_conus.tif U.S. Forest Service (USFS) Administrative Boundaries47 gridcerf_usfs_administrative_boundaries_conus.tif USFS Wilderness Areas48 gridcerf_usfs_wilderness_areas_conus.tif U.S. Geological Survey (USGS) National Wilderness Lands49 gridcerf_usgs_wilderness_areas_conus.tif USGS Protected Areas of the U.S - Class 1&amp;250 gridcerf_usgs_padus_class_1_to_2_conus.tif U.S. State Protected Lands51 gridcerf_wdpa_state_protected_lands_conus.tif Nature Conservancy lands52 gridcerf_wdpa_tnc_managed_lands_conus.tif   Technology-specific Rasters: Suitability Layer Type and Source GRIDCERF Raster Name Bureau of Indian Affairs (BIA) Land Area Representations Dataset53 gridcerf_bia_land_area_representations_conus.tif Slope 5% or less suitable20 gridcerf_srtm_slope_5pct_or_less.tif Slope 10% or less suitable20 gridcerf_srtm_slope_10pct_or_less.tif Slope 12% or less suitable20 gridcerf_srtm_slope_12pct_or_less.tif Slope 20% or less suitable20 gridcerf_srtm_slope_20pct_or_less.tif Airports (10-mile buffer)54 gridcerf_airports_10mi_buffer_conus.tif Airports (3-mile buffer)54 gridcerf_airports_3mi_buffer_conus.tif Proximity to Railroad and Navigable Waters (&lt; 5 km) 55,56 gridcerf_usdot_railnodes_navwaters_within5km.tif Coal Supply55–57 gridcerf_coalmines20km_railnodes5km_navwaters5km_conus.tif United States Environmental Protection Agency (EPA) CO Non-attainment Areas58 gridcerf_epa_nonattainment_co_conus.tif EPA NOx Non-attainment Areas58 gridcerf_epa_nonattainment_no2_conus.tif EPA Ozone Non-attainment Areas58 gridcerf_epa_nonattainment_ozone_conus.tif EPA Lead Non-attainment Areas58 gridcerf_epa_nonattainment_lead_conus.tif EPA PM10 Non-attainment Areas58 gridcerf_epa_nonattainment_pm10_conus.tif EPA PM2.5 Non-attainment Areas58 gridcerf_epa_nonattainment_pm2p5_conus.tif EPA SOx Non-attainment Areas58 gridcerf_epa_nonattainment_so2_conus.tif Earthquake Potential59 gridcerf_usgs_earthquake_pga_0.3_at_2pct_in_50yrs_conus.tif Densely population areas11 gridcerf_densely_populated_ssp[2,3,5]_[year].tif Densely population areas buffered by 25 miles11 gridcerf_densely_populated_ssp[2,3,5]_[year]_buff25mi.tif Densely population areas – nuclear11 gridcerf_densely_populated_ssp[2,3,5]_[year]_nuclear.tif National Hydrography Dataset (version 2; NHDv2)32 gridcerf_nhd2plus_surfaceflow_greaterthan[bin]mgd_buffer20km.tif National Renewable Energy Laboratory (NREL) concentrating solar direct normal potential26 gridcerf_nrel_solar_csp_centralized_potential.tif NREL photovoltaic potential26 gridcerf_nrel_solar_pv_centralized_potential.tif NREL Wind Integration National Dataset (WIND) toolkit22 gridcerf_nrel_wind_development_potential_hubheight[080,110,140]_cf35.tif   Compiled Technology Rasters: The list of layers that make up each compiled technology raster can be found in the "reference/compiled_layer_configuration.txt" file in this data archive. The following technology raster file names are self-descriptive in the format "gridcerf____.tif".  Some technologies do not have a carbon capture or cooling type designation and will simply have technology specific considerations listed. gridcerf_biomass_conventional_ccs_dry.tif gridcerf_biomass_conventional_ccs_oncethrough.tif gridcerf_biomass_conventional_ccs_recirculating.tif gridcerf_biomass_conventional_no-ccs_dry.tif gridcerf_biomass_conventional_no-ccs_oncethrough.tif gridcerf_biomass_conventional_no-ccs_pond.tif gridcerf_biomass_conventional_no-ccs_recirculating.tif gridcerf_biomass_igcc_no-ccs_dry.tif gridcerf_biomass_igcc_no-ccs_oncethrough.tif gridcerf_biomass_igcc_no-ccs_recirculating.tif gridcerf_biomass_igcc_with-ccs_dry.tif gridcerf_biomass_igcc_with-ccs_oncethrough.tif gridcerf_biomass_igcc_with-ccs_recirculating.tif gridcerf_coal_conventional_ccs_dry.tif gridcerf_coal_conventional_ccs_oncethrough.tif gridcerf_coal_conventional_ccs_recirculating.tif gridcerf_coal_conventional_no-ccs_dry.tif gridcerf_coal_conventional_no-ccs_oncethrough.tif gridcerf_coal_conventional_no-ccs_pond.tif gridcerf_coal_conventional_no-ccs_recirculating.tif gridcerf_coal_igcc_no-ccs_dry.tif gridcerf_coal_igcc_no-ccs_oncethrough.tif gridcerf_coal_igcc_no-ccs_recirculating.tif gridcerf_coal_igcc_with-ccs_dry.tif gridcerf_coal_igcc_with-ccs_oncethrough.tif gridcerf_coal_igcc_with-ccs_recirculating.tif gridcerf_gas_cc_ccs_dry.tif gridcerf_gas_cc_ccs_oncethrough.tif gridcerf_gas_cc_ccs_recirculating.tif gridcerf_gas_cc_no-ccs_dry.tif gridcerf_gas_cc_no-ccs_oncethrough.tif gridcerf_gas_cc_no-ccs_pond.tif gridcerf_gas_cc_no-ccs_recirculating.tif gridcerf_gas_turbine_dry.tif gridcerf_gas_turbine_oncethrough.tif gridcerf_gas_turbine_pond.tif gridcerf_gas_turbine_recirculating.tif gridcerf_nuclear_gen3_oncethrough.tif gridcerf_nuclear_gen3_pond.tif gridcerf_nuclear_gen3_recirculating.tif gridcerf_refinedliquids_cc_ccs_dry.tif gridcerf_refinedliquids_cc_ccs_oncethrough.tif gridcerf_refinedliquids_cc_ccs_recirculating.tif gridcerf_refinedliquids_cc_no-ccs_dry.tif gridcerf_refinedliquids_cc_no-ccs_oncethrough.tif gridcerf_refinedliquids_cc_no-ccs_recirculating.tif gridcerf_refinedliquids_ct_dry.tif gridcerf_refinedliquids_ct_oncethrough.tif gridcerf_refinedliquids_ct_pond.tif gridcerf_refinedliquids_ct_recirculating.tif gridcerf_solar_csp_centralized_dry-hybrid.tif gridcerf_solar_csp_centralized_recirculating.tif gridcerf_solar_pv_centralized.tif gridcerf_wind_onshore_hubheight080m.tif gridcerf_wind_onshore_hubheight110m.tif gridcerf_wind_onshore_hubheight140m.tif Reference Data:  Contains land mask and other useful boundary data.  Also contains additional literature review resource and the layers used to build the compiled suitability. References: 1.         Bureau of Land Management. BLM National Surface Management Agency Area Polygons - National Geospatial Data Asset (NGDA). Landscape Approach Data Portal https://gbp-blm-egis.hub.arcgis.com/datasets/blm-national-sma-surface-management-agency-area-polygons/about (2023). 2.         Bureau of Land Management. BLM National NLCS National Monuments, National Conservation Areas and Similar Designations Polygons. U.S.Department of Interior Bureau of Land Management Geospatial Business Plaform https://gbp-blm-egis.hub.arcgis.com/datasets/BLM-EGIS::blm-natl-nlcs-national-monuments-national-conservation-areas-polygons/about (2023). 3.         Hartger, P. NLCS Outstanding Natural Areas. ArcGIS Hub https://hub.arcgis.com/datasets/Wilderness::nlcs-outstanding-natural-areas/about (2017). 4.         Bureau of Land Management. BLM National NLCS Wilderness Areas Polygons. U.S.Department of Interior Bureau of Land Management Geospatial Business Plaform https://arcg.is/a01uC (2023). 5.         Bureau of Land Management. BLM National NLCS Wilderness Study Areas Polygons. U.S.Department of Interior https://arcg.is/14XPiC (2023). 6.         United States Environmental Protection Agency. Mandatory Class 1 Federal Areas Web Service. Mandatory Class 1 Federal Areas Web</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.6601789</doi><orcidid>https://orcid.org/0000-0002-3406-6214</orcidid><orcidid>https://orcid.org/0000-0003-2807-7088</orcidid><orcidid>https://orcid.org/0000-0002-6745-167X</orcidid><orcidid>https://orcid.org/0000-0002-7833-9456</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.6601789
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_6601789
source DataCite
subjects Capacity Expansion
Geospatial
MultiSector Dynamics
title GRIDCERF: Geospatial Raster Input Data for Capacity Expansion Regional Feasibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Vernon,%20C.%20R.&rft.date=2023-10-25&rft_id=info:doi/10.5281/zenodo.6601789&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_6601789%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true