VisSE corpus of Spanish SignWriting

The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Antonio F. G. Sevilla, José María Lahoz-Bengoechea, Alberto Díaz Esteban
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Antonio F. G. Sevilla
José María Lahoz-Bengoechea
Alberto Díaz Esteban
description The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks for the automatic recognition of SignWriting. It can be used with Quevedo or with third party tools thanks to its standard and open format. The VisSE corpus is the result of the VisSE Project, financed by Indra and Fundación Universia in the program for funding of research projects on Accesible Technologies.
doi_str_mv 10.5281/zenodo.6337884
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_6337884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_6337884</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_63378843</originalsourceid><addsrcrecordid>eNpjYBAzNNAzNbIw1K9KzctPydczMzY2t7Aw4WRQDsssDnZVSM4vKigtVshPUwguSMzLLM5QCM5MzwsvyizJzEvnYWBNS8wpTuWF0twMem6uIc4euimJJYnJmSWp8QVFmbmJRZXxhgbxIFviIbbEQ20xJlkDADMGNfQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>VisSE corpus of Spanish SignWriting</title><source>DataCite</source><creator>Antonio F. G. Sevilla ; José María Lahoz-Bengoechea ; Alberto Díaz Esteban</creator><creatorcontrib>Antonio F. G. Sevilla ; José María Lahoz-Bengoechea ; Alberto Díaz Esteban</creatorcontrib><description>The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks for the automatic recognition of SignWriting. It can be used with Quevedo or with third party tools thanks to its standard and open format. The VisSE corpus is the result of the VisSE Project, financed by Indra and Fundación Universia in the program for funding of research projects on Accesible Technologies.</description><identifier>DOI: 10.5281/zenodo.6337884</identifier><language>eng</language><publisher>Zenodo</publisher><subject>Graphical Language ; Machine Learning ; Sign Language ; SignWriting</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9025-1724 ; 0000-0003-1966-3421 ; 0000-0002-4654-6776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.6337884$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Antonio F. G. Sevilla</creatorcontrib><creatorcontrib>José María Lahoz-Bengoechea</creatorcontrib><creatorcontrib>Alberto Díaz Esteban</creatorcontrib><title>VisSE corpus of Spanish SignWriting</title><description>The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks for the automatic recognition of SignWriting. It can be used with Quevedo or with third party tools thanks to its standard and open format. The VisSE corpus is the result of the VisSE Project, financed by Indra and Fundación Universia in the program for funding of research projects on Accesible Technologies.</description><subject>Graphical Language</subject><subject>Machine Learning</subject><subject>Sign Language</subject><subject>SignWriting</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAzNNAzNbIw1K9KzctPydczMzY2t7Aw4WRQDsssDnZVSM4vKigtVshPUwguSMzLLM5QCM5MzwsvyizJzEvnYWBNS8wpTuWF0twMem6uIc4euimJJYnJmSWp8QVFmbmJRZXxhgbxIFviIbbEQ20xJlkDADMGNfQ</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Antonio F. G. Sevilla</creator><creator>José María Lahoz-Bengoechea</creator><creator>Alberto Díaz Esteban</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0001-9025-1724</orcidid><orcidid>https://orcid.org/0000-0003-1966-3421</orcidid><orcidid>https://orcid.org/0000-0002-4654-6776</orcidid></search><sort><creationdate>20220308</creationdate><title>VisSE corpus of Spanish SignWriting</title><author>Antonio F. G. Sevilla ; José María Lahoz-Bengoechea ; Alberto Díaz Esteban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_63378843</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graphical Language</topic><topic>Machine Learning</topic><topic>Sign Language</topic><topic>SignWriting</topic><toplevel>online_resources</toplevel><creatorcontrib>Antonio F. G. Sevilla</creatorcontrib><creatorcontrib>José María Lahoz-Bengoechea</creatorcontrib><creatorcontrib>Alberto Díaz Esteban</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Antonio F. G. Sevilla</au><au>José María Lahoz-Bengoechea</au><au>Alberto Díaz Esteban</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>VisSE corpus of Spanish SignWriting</title><date>2022-03-08</date><risdate>2022</risdate><abstract>The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks for the automatic recognition of SignWriting. It can be used with Quevedo or with third party tools thanks to its standard and open format. The VisSE corpus is the result of the VisSE Project, financed by Indra and Fundación Universia in the program for funding of research projects on Accesible Technologies.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.6337884</doi><orcidid>https://orcid.org/0000-0001-9025-1724</orcidid><orcidid>https://orcid.org/0000-0003-1966-3421</orcidid><orcidid>https://orcid.org/0000-0002-4654-6776</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.6337884
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_6337884
source DataCite
subjects Graphical Language
Machine Learning
Sign Language
SignWriting
title VisSE corpus of Spanish SignWriting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Antonio%20F.%20G.%20Sevilla&rft.date=2022-03-08&rft_id=info:doi/10.5281/zenodo.6337884&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_6337884%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true