VisSE corpus of Spanish SignWriting
The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Antonio F. G. Sevilla José María Lahoz-Bengoechea Alberto Díaz Esteban |
description | The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks for the automatic recognition of SignWriting. It can be used with Quevedo or with third party tools thanks to its standard and open format. The VisSE corpus is the result of the VisSE Project, financed by Indra and Fundación Universia in the program for funding of research projects on Accesible Technologies. |
doi_str_mv | 10.5281/zenodo.6337884 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_6337884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_6337884</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_63378843</originalsourceid><addsrcrecordid>eNpjYBAzNNAzNbIw1K9KzctPydczMzY2t7Aw4WRQDsssDnZVSM4vKigtVshPUwguSMzLLM5QCM5MzwsvyizJzEvnYWBNS8wpTuWF0twMem6uIc4euimJJYnJmSWp8QVFmbmJRZXxhgbxIFviIbbEQ20xJlkDADMGNfQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>VisSE corpus of Spanish SignWriting</title><source>DataCite</source><creator>Antonio F. G. Sevilla ; José María Lahoz-Bengoechea ; Alberto Díaz Esteban</creator><creatorcontrib>Antonio F. G. Sevilla ; José María Lahoz-Bengoechea ; Alberto Díaz Esteban</creatorcontrib><description>The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks for the automatic recognition of SignWriting. It can be used with Quevedo or with third party tools thanks to its standard and open format. The VisSE corpus is the result of the VisSE Project, financed by Indra and Fundación Universia in the program for funding of research projects on Accesible Technologies.</description><identifier>DOI: 10.5281/zenodo.6337884</identifier><language>eng</language><publisher>Zenodo</publisher><subject>Graphical Language ; Machine Learning ; Sign Language ; SignWriting</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9025-1724 ; 0000-0003-1966-3421 ; 0000-0002-4654-6776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.6337884$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Antonio F. G. Sevilla</creatorcontrib><creatorcontrib>José María Lahoz-Bengoechea</creatorcontrib><creatorcontrib>Alberto Díaz Esteban</creatorcontrib><title>VisSE corpus of Spanish SignWriting</title><description>The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks for the automatic recognition of SignWriting. It can be used with Quevedo or with third party tools thanks to its standard and open format. The VisSE corpus is the result of the VisSE Project, financed by Indra and Fundación Universia in the program for funding of research projects on Accesible Technologies.</description><subject>Graphical Language</subject><subject>Machine Learning</subject><subject>Sign Language</subject><subject>SignWriting</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAzNNAzNbIw1K9KzctPydczMzY2t7Aw4WRQDsssDnZVSM4vKigtVshPUwguSMzLLM5QCM5MzwsvyizJzEvnYWBNS8wpTuWF0twMem6uIc4euimJJYnJmSWp8QVFmbmJRZXxhgbxIFviIbbEQ20xJlkDADMGNfQ</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Antonio F. G. Sevilla</creator><creator>José María Lahoz-Bengoechea</creator><creator>Alberto Díaz Esteban</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0001-9025-1724</orcidid><orcidid>https://orcid.org/0000-0003-1966-3421</orcidid><orcidid>https://orcid.org/0000-0002-4654-6776</orcidid></search><sort><creationdate>20220308</creationdate><title>VisSE corpus of Spanish SignWriting</title><author>Antonio F. G. Sevilla ; José María Lahoz-Bengoechea ; Alberto Díaz Esteban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_63378843</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graphical Language</topic><topic>Machine Learning</topic><topic>Sign Language</topic><topic>SignWriting</topic><toplevel>online_resources</toplevel><creatorcontrib>Antonio F. G. Sevilla</creatorcontrib><creatorcontrib>José María Lahoz-Bengoechea</creatorcontrib><creatorcontrib>Alberto Díaz Esteban</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Antonio F. G. Sevilla</au><au>José María Lahoz-Bengoechea</au><au>Alberto Díaz Esteban</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>VisSE corpus of Spanish SignWriting</title><date>2022-03-08</date><risdate>2022</risdate><abstract>The VisSE corpus is a collection of SignWriting instances, annotated graphically and semantically to capture all the meaning, both lexical and visual, of SignWriting. The samples are handwritten, and codify signs or parts of signs from Spanish Sign Language. It also includes trained neural networks for the automatic recognition of SignWriting. It can be used with Quevedo or with third party tools thanks to its standard and open format. The VisSE corpus is the result of the VisSE Project, financed by Indra and Fundación Universia in the program for funding of research projects on Accesible Technologies.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.6337884</doi><orcidid>https://orcid.org/0000-0001-9025-1724</orcidid><orcidid>https://orcid.org/0000-0003-1966-3421</orcidid><orcidid>https://orcid.org/0000-0002-4654-6776</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.5281/zenodo.6337884 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_5281_zenodo_6337884 |
source | DataCite |
subjects | Graphical Language Machine Learning Sign Language SignWriting |
title | VisSE corpus of Spanish SignWriting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Antonio%20F.%20G.%20Sevilla&rft.date=2022-03-08&rft_id=info:doi/10.5281/zenodo.6337884&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_6337884%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |