Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1

How activation of PINK1 and Parkin leads to elimination of damaged mitochondria by mitophagy is largely based on cell lines with few studies in neurons. Herein we have undertaken proteomic analysis of mitochondria from mouse neurons to identify ubiquitylated substrates of endogenous Parkin. Comparat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Antico, Odetta, Ordureau, Alban, Stevens, Michael, Francois Singh, Nirujogi, Raja S., Gierlinski, Marek, Barini, Erica, Rickwood, Mollie L., Prescott, Alan, Toth, Rachel, Ganley, Ian G., J. Wade Harper, Miratul M. K. Muqit
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Antico, Odetta
Ordureau, Alban
Stevens, Michael
Francois Singh
Nirujogi, Raja S.
Gierlinski, Marek
Barini, Erica
Rickwood, Mollie L.
Prescott, Alan
Toth, Rachel
Ganley, Ian G.
J. Wade Harper
Miratul M. K. Muqit
description How activation of PINK1 and Parkin leads to elimination of damaged mitochondria by mitophagy is largely based on cell lines with few studies in neurons. Herein we have undertaken proteomic analysis of mitochondria from mouse neurons to identify ubiquitylated substrates of endogenous Parkin. Comparative analysis with human iNeuron datasets revealed a subset of 49 PINK1 activation-dependent diGLY sites in 22 proteins conserved across mouse and human systems. We employ reconstitution assays to demonstrate direct ubiquitylation by Parkin in vitro. We also identified a subset of cytoplasmic proteins recruited to mitochondria that undergo PINK1 and Parkin independent ubiquitylation indicating the presence of alternate ubiquitin E3 ligase pathways that are activated by mitochondrial depolarisation in neurons. Finally we have developed an online resource to search for ubiquitin sites and enzymes in mitochondria of neurons, MitoNUb. These findings will aid future studies to understand Parkin activation in neuronal subtypes. FILE DECRIPTIONS Figure 1C: Immunoblots for PINK1 signaling in PINK1 WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in Figure1C_GAPDH.tif Parkin shown in Figure1C_Parkin.tif Phospho-Ser65 Parkin shown in Figure1C_ParkinPSer65.tif PINK1 shown in Figure1C_PINK1.tif (immunoprecipitation) Rab8A shown in Figure1C_Rab8A.tif Phospho-Ser111 Rab8A shown in Figure1C_Rab8APSer111.tif Ubiquitin shown in Figure1C_ S10A_Ubiquitin.tif (same blot used for Figure_S10A, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in Figure1C_S10A_UbiquitinPSer65.tif (same blot used for Figure_S10A, Halo-multiDSK pull-down) Figure 4A: Immunoblots for time-course of Parkin-dependent substrates in C57BL/6J neurons. Scans of X-ray film: CISD1 shown in Figure4A_CISD1.tif (Halo-multiDSK pull-down) Figure4A_INPUT_CISD1.tif (INPUT) CPT1α shown in Figure4A_ CPT1a.tif (Halo-multiDSK pull-down) Figure4A_INPUT_CPT1a.tif (INPUT) Ubiquitin shown in Figure4A_Ubiquitin.tif (Halo-multiDSK pull-down) Figure4A_INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure4_UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure4A_INPUT_GAPDH.tif (INPUT) Figure 4B: Immunoblots for validation of Parkin-dependent substrates in PARKIN WT and KO neurons. Scans of X-ray film: CISD1 shown in Figure4B_CISD1.tif (Halo-multiDSK pull-down) (bottom blot) Figure4B_INPUT_CPT1a_CISD1.tif (INPUT) CPT1α shown in Figure4B_ CPT1a.tif (Halo-multiDSK pull-down) (top blot)
doi_str_mv 10.5281/zenodo.5163705
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_5163705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_5163705</sourcerecordid><originalsourceid>FETCH-LOGICAL-d795-d0136a1325820984a025256e9c0bf7e86d0448226bd7e4b8a67f1b1ee25ff89d3</originalsourceid><addsrcrecordid>eNotkLFOwzAURbMwoMLK7B9osJ04cUZUQamoaIfu0Uv8XJ5wbYgdUJn5cIqS6S5X9-ieLLsTPFdSi_sf9MGEXImqqLm6zn7XLnTg2NjR50jp7CBR8Aw8uHOkyIJlJ0qhfwveDASMPPsY6ATDmXkch-AjI4M-kSWMDL0JxwthjGwPw_ulnGA4YorMBufCN_kjgz7R10S5jO83ry_iJruy4CLezrnIDk-Ph9Xzcrtbb1YP26WpG7U0XBQViEIqLXmjS-BSSVVh0_PO1qgrw8tSS1l1psay01DVVnQCUSprdWOKRZZPswYS9JSwna-0grf_dtrJTjvbKf4AX6pipw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1</title><source>DataCite</source><creator>Antico, Odetta ; Ordureau, Alban ; Stevens, Michael ; Francois Singh ; Nirujogi, Raja S. ; Gierlinski, Marek ; Barini, Erica ; Rickwood, Mollie L. ; Prescott, Alan ; Toth, Rachel ; Ganley, Ian G. ; J. Wade Harper ; Miratul M. K. Muqit</creator><creatorcontrib>Antico, Odetta ; Ordureau, Alban ; Stevens, Michael ; Francois Singh ; Nirujogi, Raja S. ; Gierlinski, Marek ; Barini, Erica ; Rickwood, Mollie L. ; Prescott, Alan ; Toth, Rachel ; Ganley, Ian G. ; J. Wade Harper ; Miratul M. K. Muqit</creatorcontrib><description>How activation of PINK1 and Parkin leads to elimination of damaged mitochondria by mitophagy is largely based on cell lines with few studies in neurons. Herein we have undertaken proteomic analysis of mitochondria from mouse neurons to identify ubiquitylated substrates of endogenous Parkin. Comparative analysis with human iNeuron datasets revealed a subset of 49 PINK1 activation-dependent diGLY sites in 22 proteins conserved across mouse and human systems. We employ reconstitution assays to demonstrate direct ubiquitylation by Parkin in vitro. We also identified a subset of cytoplasmic proteins recruited to mitochondria that undergo PINK1 and Parkin independent ubiquitylation indicating the presence of alternate ubiquitin E3 ligase pathways that are activated by mitochondrial depolarisation in neurons. Finally we have developed an online resource to search for ubiquitin sites and enzymes in mitochondria of neurons, MitoNUb. These findings will aid future studies to understand Parkin activation in neuronal subtypes. FILE DECRIPTIONS Figure 1C: Immunoblots for PINK1 signaling in PINK1 WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in Figure1C_GAPDH.tif Parkin shown in Figure1C_Parkin.tif Phospho-Ser65 Parkin shown in Figure1C_ParkinPSer65.tif PINK1 shown in Figure1C_PINK1.tif (immunoprecipitation) Rab8A shown in Figure1C_Rab8A.tif Phospho-Ser111 Rab8A shown in Figure1C_Rab8APSer111.tif Ubiquitin shown in Figure1C_ S10A_Ubiquitin.tif (same blot used for Figure_S10A, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in Figure1C_S10A_UbiquitinPSer65.tif (same blot used for Figure_S10A, Halo-multiDSK pull-down) Figure 4A: Immunoblots for time-course of Parkin-dependent substrates in C57BL/6J neurons. Scans of X-ray film: CISD1 shown in Figure4A_CISD1.tif (Halo-multiDSK pull-down) Figure4A_INPUT_CISD1.tif (INPUT) CPT1α shown in Figure4A_ CPT1a.tif (Halo-multiDSK pull-down) Figure4A_INPUT_CPT1a.tif (INPUT) Ubiquitin shown in Figure4A_Ubiquitin.tif (Halo-multiDSK pull-down) Figure4A_INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure4_UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure4A_INPUT_GAPDH.tif (INPUT) Figure 4B: Immunoblots for validation of Parkin-dependent substrates in PARKIN WT and KO neurons. Scans of X-ray film: CISD1 shown in Figure4B_CISD1.tif (Halo-multiDSK pull-down) (bottom blot) Figure4B_INPUT_CPT1a_CISD1.tif (INPUT) CPT1α shown in Figure4B_ CPT1a.tif (Halo-multiDSK pull-down) (top blot) Figure4B_INPUT_CPT1a_CISD1.tif ( (INPUT) Ubiquitin shown in Figure4B_Ubiquitin.tif (Halo-multiDSK pull-down) Figure4B_INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure4B_UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure4B_INPUT_GAPDH.tif (INPUT) Figure 5A: Immunoblots for in vitro reconstitution assay in PINK1 WT and KO mouse embryonic fibroblasts. Scans of X-ray film: CISD1shown in Figure5A_CISD1.tif CPT1α shown in Figure5A_ CPT1a.tif CYB5B shown in Figure5A_CYB5B.tif HK1 shown in Figure5A_HK1.tif MFN2 shown in Figure5A_MFN2.tif VDAC shown in Figure5A_VDAC.tif Phospho-Ser65 Parkin shown in Figure5A_ParkinPSer65.tif Parkin shown in Figure5A_Parkin.tif Ubiquitin shown in Figure5A_Ubiquitin.tif Phospho-Ser65 Ubiquitin shown in Figure5A_UbiquitinPSer65.tif Figure 5B: Immunoblots for validation of Parkin-dependent substrates in in vitro studies. Scans of Western blots (LI-COR): CPT1α shown in Figure5B_ CPT1 α_800nm.tif Flag-Ub (CPT1α) shown in Figure5B_ CPT1 α_Flag_800nm.tif His (CPT1α) shown in Figure5B_ CPT1 α_His_800nm.tif Miro1 shown in Figure5B_Miro1_800nm.tif Flag-Ub (Miro1) shown in Figure5B_ Miro1_Flag_800nm.tif His (Miro1) shown in Figure5B_ Miro1_His_800nm.tif Figure 5C: Immunoblots for time-course of CPT1α ubiquitylation in in vitro studies. Scans of Western blots (LI-COR): CPT1α shown in top blot: Figure5C_Flag_CPT1α_800nm.tif Flag-Ub shown in bottom blot: Figure5C_Flag_CPT1α_800nm.tif His shown in Figure5C_ CPT1 α_His_800nm.tif Figure S3A: Immunoblots for PINK1 signaling in C57BL/6J neurons. Scans of X-ray film: GAPDH shown in FigureS3A_GAPDH.tif Parkin shown in FigureS3A_Parkin.tif Phospho-Ser65 Parkin shown in FigureS3A_ParkinPSer65.tif PINK1 shown in FigureS3A_PINK1.tif (immunoprecipitation) Rab8A shown in FigureS3A_Rab8A.tif Phospho-Ser111 Rab8A shown in FigureS3A_Rab8APSer111.tif Ubiquitin shown in FigureS3A_Ubiquitin.tif (same blot used for Figure_4A, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in FigureS3A_UbiquitinPSer65.tif (same blot used for Figure_4A, Halo-multiDSK pull-down) Phospho-Ser111 Rab8A and Phospho-Ser65 Parkin also shown in FigureS3A_ParkinPSer65_Rab8APSer111.tif Figure S3B: Immunoblots for comparison of Halo-multiDSK and Halo-TUBE in C57BL/6J neurons. Ubiquitin shown in FigureS9_S3_Ubiquitin.tif (same blot used for Figure_S9) Phospho-Ser65 Ubiquitin shown in FigureS9_S3_UbiquitinPSer65.tif (same blot used for Figure_S9) Figure S3C: Immunoblots for PINK1 signaling in Parkin WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS3C_GAPDH.tif Parkin shown in FigureS3C_Parkin.tif Phospho-Ser65 Parkin shown in FigureS3C_ParkinPSer65.tif PINK1 shown in FigureS3C_PINK1.tif (immunoprecipitation) Rab8A shown in FigureS3C_Rab8A.tif Phospho-Ser111 Rab8A shown in FigureS3C_Rab8APSer111.tif Ubiquitin shown in FigureS3C_ Ubiquitin.tif (same blot used for Figure_4B, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in FigureS3C_ UbiquitinPSer65.tif (same blot used for Figure_4B, Halo-multiDSK pull-down) Figure S4: Immunoblots for PINK-Parkin signaling in VPS35 D620N mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS4_GAPDH.tif Parkin shown in FigureS4_Parkin.tif Phospho-Ser65 Parkin shown in FigureS4_ParkinPSer65.tif Rab8A shown in FigureS4_Rab8A.tif Phospho-Ser111 Rab8A shown in FigureS4_Rab8APSer111.tif CISD1 shown in FigureS4_ CISD1.tif (Halo-UBQLN1 pull-down) Phospho-Ser65 Ubiquitin shown in FigureS4_ UbiquitinPSer65.tif (Halo-UBQLN1 pull-down) VPS35 shown in FigureS4_VPS35.tif Scan of Memcode shown in FigureS4_Memcode.tif Figure S6: Immunoblots for biochemical analysis in C56BL/6J mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS6_GAPDH.tif Phospho-Ser65 Ubiquitin shown in FigureS6_ UbiquitinPSer65.tif Figure S8: Immunoblots for biochemical analysis in PINK1 WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS8_GAPDH.tif Phospho-Ser65 Ubiquitin shown in FigureS8_ UbiquitinPSer65.tif Figure S9: Immunoblots for biochemical analysis of ubiquitylated target in C56BL/6J mouse cortical neurons. Membrane-enriched lysate subjected to ubiquitin capture using UBQLN1(TUBE), multiDSK and mutant multiDSK pull-down (Illustration of sample loading in figures FigureS9_ACSL6,_MFN2, _UbiquitinPSer65, _NAV1.7). Scans of X-ray film: Ubiquitin shown in FigureS9_S3_Ubiquitin.tif (same blot used for Figure_S3B) Phospho-Ser65 Ubiquitin shown in FigureS9_S3_UbiquitinPSer65.tif (same blot used for Figure_S3B) ABCD3 shown in FigureS9_ABCD3.tif ACSL1shown in FigureS9_ ACSL1.tif ACSL6 shown in FigureS9_ACSL6.tif AGPAT5 shown in FigureS9_AGPAT5.tif ARHGAP33 shown in FigureS9_ARHGAP33.tif ATAD1 shown in FigureS9_ATAD1.tif CAD shown in FigureS9_ CAD.tif CAMK2A shown in FigureS9_CAMK2A.tif CAMK2B shown in FigureS9_CAMK2B.tif CDK16 shown in FigureS9_CDK16.tif CISD1shown in FigureS9_CISD1.tif CNN3 shown in FigureS9_CNN3.tif CPT1α shown in FigureS9_ CPT1A.tif CYB5B shown in FigureS9_CYB5B.tif CYB5R3 shown in FigureS9_CYB5R3.tif DCAKD shown in FigureS9_DCAKD.tif DCAMKL2 shown in FigureS9_DCAMKL2.tif FAM213A shown in FigureS9_FAM213A.tif FBXO41 shown in FigureS9_FBXO41.tif GK shown in FigureS9_GK.tif HK1 shown in FigureS9_HK1.tif HSDL1 shown in FigureS9_HSDL1.tif MAO-A shown in FigureS9_MAOA.tif MAO-B shown in FigureS9_MAOB.tif MAPRE2 shown in FigureS9_MAPRE2.tif MARC2 shown in FigureS9_MARC2.tif MFN1 shown in FigureS9_MFN1.tif MFN2 shown in FigureS9_MFN2.tif NAV1.7 shown in FigureS9_NAV1.7.tif P23 shown in FigureS9_p23.tif PRKCG shown in FigureS9_PRKCG.tif RAB5C shown in FigureS9_Rab5c.tif RHOT2 shown in FigureS9_RHOT2.tif RIMS4 shown in FigureS9_RIMS4.tif RUFY3 shown in FigureS9_RUFY3.tif SH3BP4 shown in FigureS9_SH3BP4.tif SNX3 shown in FigureS9_SNX3.tif TDRKH shown in FigureS9_TDRKH.tif TOMM70 shown in FigureS9_TOMM70.tif Figure S10A: Immunoblots for validation of Parkin-dependent substrates in PINK1 WT and KO neurons. Scans of X-ray film: CISD1 shown in Figure S10A _CISD1.tif (Halo-multiDSK pull-down) Figure S10A _INPUT_CISD1.tif (INPUT) CPT1α shown in Figure S10A _ CPT1A.tif (Halo-multiDSK pull-down) Figure S10A _INPUT_ CPT1A.tif (INPUT) Ubiquitin shown in Figure1C_ S10A _Ubiquitin.tif (same blot used for FigureS1C, Halo-multiDSK pull-down) Figure S10A _INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure1C_ S10A_UbiquitinPSer65.tif (same blot used for FigureS1C, Halo-multiDSK pull-down) GAPDH Shown in Figure S10A _INPUT_GAPDH.tif (INPUT) Figure S10B: Immunoblots for time-course of Parkin-dependent substrates in SH-SY5Y cells. Scans of X-ray film: CISD1 shown in Figure S10B _CISD1.tif (Halo-multiDSK pull-down) CPT1α shown in Figure S10B _ CPT1A.tif (Halo-multiDSK pull-down) Ubiquitin shown in Figure S10B _Ubiquitin.tif (Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in Figure S10B _UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure S10B _GAPDH.tif Parkin shown in FigureS10B_Parkin.tif Phospho-Ser65 Parkin shown in FigureS10B_ParkinPSer65.tif PINK1 shown in FigureS10B_PINK1.tif OPA1 shown in FigureS10B_OPA1.tif Figure S11: Immunoblots for in vitro reconstitution assay in HeLa cells. Scans of X-ray film: CISD1shown in FigureS11_CISD1.tif CPT1α shown in FigureS11_ CPT1a.tif CYB5B shown in FigureS11_CYB5B.tif HK1 shown in FigureS11_HK1.tif MFN2 shown in FigureS11_MFN2.tif VDAC shown in FigureS11_VDAC.tif Phospho-Ser65 Parkin shown in FigureS11_ParkinPSer65.tif Parkin shown in FigureS11_Parkin.tif Ub</description><identifier>DOI: 10.5281/zenodo.5163705</identifier><language>eng</language><publisher>Zenodo</publisher><subject>Neurons, PINK1, Parkin, ubiquitin, Parkinson's disease, Mitochondria</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.5163705$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Antico, Odetta</creatorcontrib><creatorcontrib>Ordureau, Alban</creatorcontrib><creatorcontrib>Stevens, Michael</creatorcontrib><creatorcontrib>Francois Singh</creatorcontrib><creatorcontrib>Nirujogi, Raja S.</creatorcontrib><creatorcontrib>Gierlinski, Marek</creatorcontrib><creatorcontrib>Barini, Erica</creatorcontrib><creatorcontrib>Rickwood, Mollie L.</creatorcontrib><creatorcontrib>Prescott, Alan</creatorcontrib><creatorcontrib>Toth, Rachel</creatorcontrib><creatorcontrib>Ganley, Ian G.</creatorcontrib><creatorcontrib>J. Wade Harper</creatorcontrib><creatorcontrib>Miratul M. K. Muqit</creatorcontrib><title>Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1</title><description>How activation of PINK1 and Parkin leads to elimination of damaged mitochondria by mitophagy is largely based on cell lines with few studies in neurons. Herein we have undertaken proteomic analysis of mitochondria from mouse neurons to identify ubiquitylated substrates of endogenous Parkin. Comparative analysis with human iNeuron datasets revealed a subset of 49 PINK1 activation-dependent diGLY sites in 22 proteins conserved across mouse and human systems. We employ reconstitution assays to demonstrate direct ubiquitylation by Parkin in vitro. We also identified a subset of cytoplasmic proteins recruited to mitochondria that undergo PINK1 and Parkin independent ubiquitylation indicating the presence of alternate ubiquitin E3 ligase pathways that are activated by mitochondrial depolarisation in neurons. Finally we have developed an online resource to search for ubiquitin sites and enzymes in mitochondria of neurons, MitoNUb. These findings will aid future studies to understand Parkin activation in neuronal subtypes. FILE DECRIPTIONS Figure 1C: Immunoblots for PINK1 signaling in PINK1 WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in Figure1C_GAPDH.tif Parkin shown in Figure1C_Parkin.tif Phospho-Ser65 Parkin shown in Figure1C_ParkinPSer65.tif PINK1 shown in Figure1C_PINK1.tif (immunoprecipitation) Rab8A shown in Figure1C_Rab8A.tif Phospho-Ser111 Rab8A shown in Figure1C_Rab8APSer111.tif Ubiquitin shown in Figure1C_ S10A_Ubiquitin.tif (same blot used for Figure_S10A, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in Figure1C_S10A_UbiquitinPSer65.tif (same blot used for Figure_S10A, Halo-multiDSK pull-down) Figure 4A: Immunoblots for time-course of Parkin-dependent substrates in C57BL/6J neurons. Scans of X-ray film: CISD1 shown in Figure4A_CISD1.tif (Halo-multiDSK pull-down) Figure4A_INPUT_CISD1.tif (INPUT) CPT1α shown in Figure4A_ CPT1a.tif (Halo-multiDSK pull-down) Figure4A_INPUT_CPT1a.tif (INPUT) Ubiquitin shown in Figure4A_Ubiquitin.tif (Halo-multiDSK pull-down) Figure4A_INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure4_UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure4A_INPUT_GAPDH.tif (INPUT) Figure 4B: Immunoblots for validation of Parkin-dependent substrates in PARKIN WT and KO neurons. Scans of X-ray film: CISD1 shown in Figure4B_CISD1.tif (Halo-multiDSK pull-down) (bottom blot) Figure4B_INPUT_CPT1a_CISD1.tif (INPUT) CPT1α shown in Figure4B_ CPT1a.tif (Halo-multiDSK pull-down) (top blot) Figure4B_INPUT_CPT1a_CISD1.tif ( (INPUT) Ubiquitin shown in Figure4B_Ubiquitin.tif (Halo-multiDSK pull-down) Figure4B_INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure4B_UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure4B_INPUT_GAPDH.tif (INPUT) Figure 5A: Immunoblots for in vitro reconstitution assay in PINK1 WT and KO mouse embryonic fibroblasts. Scans of X-ray film: CISD1shown in Figure5A_CISD1.tif CPT1α shown in Figure5A_ CPT1a.tif CYB5B shown in Figure5A_CYB5B.tif HK1 shown in Figure5A_HK1.tif MFN2 shown in Figure5A_MFN2.tif VDAC shown in Figure5A_VDAC.tif Phospho-Ser65 Parkin shown in Figure5A_ParkinPSer65.tif Parkin shown in Figure5A_Parkin.tif Ubiquitin shown in Figure5A_Ubiquitin.tif Phospho-Ser65 Ubiquitin shown in Figure5A_UbiquitinPSer65.tif Figure 5B: Immunoblots for validation of Parkin-dependent substrates in in vitro studies. Scans of Western blots (LI-COR): CPT1α shown in Figure5B_ CPT1 α_800nm.tif Flag-Ub (CPT1α) shown in Figure5B_ CPT1 α_Flag_800nm.tif His (CPT1α) shown in Figure5B_ CPT1 α_His_800nm.tif Miro1 shown in Figure5B_Miro1_800nm.tif Flag-Ub (Miro1) shown in Figure5B_ Miro1_Flag_800nm.tif His (Miro1) shown in Figure5B_ Miro1_His_800nm.tif Figure 5C: Immunoblots for time-course of CPT1α ubiquitylation in in vitro studies. Scans of Western blots (LI-COR): CPT1α shown in top blot: Figure5C_Flag_CPT1α_800nm.tif Flag-Ub shown in bottom blot: Figure5C_Flag_CPT1α_800nm.tif His shown in Figure5C_ CPT1 α_His_800nm.tif Figure S3A: Immunoblots for PINK1 signaling in C57BL/6J neurons. Scans of X-ray film: GAPDH shown in FigureS3A_GAPDH.tif Parkin shown in FigureS3A_Parkin.tif Phospho-Ser65 Parkin shown in FigureS3A_ParkinPSer65.tif PINK1 shown in FigureS3A_PINK1.tif (immunoprecipitation) Rab8A shown in FigureS3A_Rab8A.tif Phospho-Ser111 Rab8A shown in FigureS3A_Rab8APSer111.tif Ubiquitin shown in FigureS3A_Ubiquitin.tif (same blot used for Figure_4A, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in FigureS3A_UbiquitinPSer65.tif (same blot used for Figure_4A, Halo-multiDSK pull-down) Phospho-Ser111 Rab8A and Phospho-Ser65 Parkin also shown in FigureS3A_ParkinPSer65_Rab8APSer111.tif Figure S3B: Immunoblots for comparison of Halo-multiDSK and Halo-TUBE in C57BL/6J neurons. Ubiquitin shown in FigureS9_S3_Ubiquitin.tif (same blot used for Figure_S9) Phospho-Ser65 Ubiquitin shown in FigureS9_S3_UbiquitinPSer65.tif (same blot used for Figure_S9) Figure S3C: Immunoblots for PINK1 signaling in Parkin WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS3C_GAPDH.tif Parkin shown in FigureS3C_Parkin.tif Phospho-Ser65 Parkin shown in FigureS3C_ParkinPSer65.tif PINK1 shown in FigureS3C_PINK1.tif (immunoprecipitation) Rab8A shown in FigureS3C_Rab8A.tif Phospho-Ser111 Rab8A shown in FigureS3C_Rab8APSer111.tif Ubiquitin shown in FigureS3C_ Ubiquitin.tif (same blot used for Figure_4B, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in FigureS3C_ UbiquitinPSer65.tif (same blot used for Figure_4B, Halo-multiDSK pull-down) Figure S4: Immunoblots for PINK-Parkin signaling in VPS35 D620N mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS4_GAPDH.tif Parkin shown in FigureS4_Parkin.tif Phospho-Ser65 Parkin shown in FigureS4_ParkinPSer65.tif Rab8A shown in FigureS4_Rab8A.tif Phospho-Ser111 Rab8A shown in FigureS4_Rab8APSer111.tif CISD1 shown in FigureS4_ CISD1.tif (Halo-UBQLN1 pull-down) Phospho-Ser65 Ubiquitin shown in FigureS4_ UbiquitinPSer65.tif (Halo-UBQLN1 pull-down) VPS35 shown in FigureS4_VPS35.tif Scan of Memcode shown in FigureS4_Memcode.tif Figure S6: Immunoblots for biochemical analysis in C56BL/6J mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS6_GAPDH.tif Phospho-Ser65 Ubiquitin shown in FigureS6_ UbiquitinPSer65.tif Figure S8: Immunoblots for biochemical analysis in PINK1 WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS8_GAPDH.tif Phospho-Ser65 Ubiquitin shown in FigureS8_ UbiquitinPSer65.tif Figure S9: Immunoblots for biochemical analysis of ubiquitylated target in C56BL/6J mouse cortical neurons. Membrane-enriched lysate subjected to ubiquitin capture using UBQLN1(TUBE), multiDSK and mutant multiDSK pull-down (Illustration of sample loading in figures FigureS9_ACSL6,_MFN2, _UbiquitinPSer65, _NAV1.7). Scans of X-ray film: Ubiquitin shown in FigureS9_S3_Ubiquitin.tif (same blot used for Figure_S3B) Phospho-Ser65 Ubiquitin shown in FigureS9_S3_UbiquitinPSer65.tif (same blot used for Figure_S3B) ABCD3 shown in FigureS9_ABCD3.tif ACSL1shown in FigureS9_ ACSL1.tif ACSL6 shown in FigureS9_ACSL6.tif AGPAT5 shown in FigureS9_AGPAT5.tif ARHGAP33 shown in FigureS9_ARHGAP33.tif ATAD1 shown in FigureS9_ATAD1.tif CAD shown in FigureS9_ CAD.tif CAMK2A shown in FigureS9_CAMK2A.tif CAMK2B shown in FigureS9_CAMK2B.tif CDK16 shown in FigureS9_CDK16.tif CISD1shown in FigureS9_CISD1.tif CNN3 shown in FigureS9_CNN3.tif CPT1α shown in FigureS9_ CPT1A.tif CYB5B shown in FigureS9_CYB5B.tif CYB5R3 shown in FigureS9_CYB5R3.tif DCAKD shown in FigureS9_DCAKD.tif DCAMKL2 shown in FigureS9_DCAMKL2.tif FAM213A shown in FigureS9_FAM213A.tif FBXO41 shown in FigureS9_FBXO41.tif GK shown in FigureS9_GK.tif HK1 shown in FigureS9_HK1.tif HSDL1 shown in FigureS9_HSDL1.tif MAO-A shown in FigureS9_MAOA.tif MAO-B shown in FigureS9_MAOB.tif MAPRE2 shown in FigureS9_MAPRE2.tif MARC2 shown in FigureS9_MARC2.tif MFN1 shown in FigureS9_MFN1.tif MFN2 shown in FigureS9_MFN2.tif NAV1.7 shown in FigureS9_NAV1.7.tif P23 shown in FigureS9_p23.tif PRKCG shown in FigureS9_PRKCG.tif RAB5C shown in FigureS9_Rab5c.tif RHOT2 shown in FigureS9_RHOT2.tif RIMS4 shown in FigureS9_RIMS4.tif RUFY3 shown in FigureS9_RUFY3.tif SH3BP4 shown in FigureS9_SH3BP4.tif SNX3 shown in FigureS9_SNX3.tif TDRKH shown in FigureS9_TDRKH.tif TOMM70 shown in FigureS9_TOMM70.tif Figure S10A: Immunoblots for validation of Parkin-dependent substrates in PINK1 WT and KO neurons. Scans of X-ray film: CISD1 shown in Figure S10A _CISD1.tif (Halo-multiDSK pull-down) Figure S10A _INPUT_CISD1.tif (INPUT) CPT1α shown in Figure S10A _ CPT1A.tif (Halo-multiDSK pull-down) Figure S10A _INPUT_ CPT1A.tif (INPUT) Ubiquitin shown in Figure1C_ S10A _Ubiquitin.tif (same blot used for FigureS1C, Halo-multiDSK pull-down) Figure S10A _INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure1C_ S10A_UbiquitinPSer65.tif (same blot used for FigureS1C, Halo-multiDSK pull-down) GAPDH Shown in Figure S10A _INPUT_GAPDH.tif (INPUT) Figure S10B: Immunoblots for time-course of Parkin-dependent substrates in SH-SY5Y cells. Scans of X-ray film: CISD1 shown in Figure S10B _CISD1.tif (Halo-multiDSK pull-down) CPT1α shown in Figure S10B _ CPT1A.tif (Halo-multiDSK pull-down) Ubiquitin shown in Figure S10B _Ubiquitin.tif (Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in Figure S10B _UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure S10B _GAPDH.tif Parkin shown in FigureS10B_Parkin.tif Phospho-Ser65 Parkin shown in FigureS10B_ParkinPSer65.tif PINK1 shown in FigureS10B_PINK1.tif OPA1 shown in FigureS10B_OPA1.tif Figure S11: Immunoblots for in vitro reconstitution assay in HeLa cells. Scans of X-ray film: CISD1shown in FigureS11_CISD1.tif CPT1α shown in FigureS11_ CPT1a.tif CYB5B shown in FigureS11_CYB5B.tif HK1 shown in FigureS11_HK1.tif MFN2 shown in FigureS11_MFN2.tif VDAC shown in FigureS11_VDAC.tif Phospho-Ser65 Parkin shown in FigureS11_ParkinPSer65.tif Parkin shown in FigureS11_Parkin.tif Ub</description><subject>Neurons, PINK1, Parkin, ubiquitin, Parkinson's disease, Mitochondria</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotkLFOwzAURbMwoMLK7B9osJ04cUZUQamoaIfu0Uv8XJ5wbYgdUJn5cIqS6S5X9-ieLLsTPFdSi_sf9MGEXImqqLm6zn7XLnTg2NjR50jp7CBR8Aw8uHOkyIJlJ0qhfwveDASMPPsY6ATDmXkch-AjI4M-kSWMDL0JxwthjGwPw_ulnGA4YorMBufCN_kjgz7R10S5jO83ry_iJruy4CLezrnIDk-Ph9Xzcrtbb1YP26WpG7U0XBQViEIqLXmjS-BSSVVh0_PO1qgrw8tSS1l1psay01DVVnQCUSprdWOKRZZPswYS9JSwna-0grf_dtrJTjvbKf4AX6pipw</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Antico, Odetta</creator><creator>Ordureau, Alban</creator><creator>Stevens, Michael</creator><creator>Francois Singh</creator><creator>Nirujogi, Raja S.</creator><creator>Gierlinski, Marek</creator><creator>Barini, Erica</creator><creator>Rickwood, Mollie L.</creator><creator>Prescott, Alan</creator><creator>Toth, Rachel</creator><creator>Ganley, Ian G.</creator><creator>J. Wade Harper</creator><creator>Miratul M. K. Muqit</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20210805</creationdate><title>Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1</title><author>Antico, Odetta ; Ordureau, Alban ; Stevens, Michael ; Francois Singh ; Nirujogi, Raja S. ; Gierlinski, Marek ; Barini, Erica ; Rickwood, Mollie L. ; Prescott, Alan ; Toth, Rachel ; Ganley, Ian G. ; J. Wade Harper ; Miratul M. K. Muqit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d795-d0136a1325820984a025256e9c0bf7e86d0448226bd7e4b8a67f1b1ee25ff89d3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Neurons, PINK1, Parkin, ubiquitin, Parkinson's disease, Mitochondria</topic><toplevel>online_resources</toplevel><creatorcontrib>Antico, Odetta</creatorcontrib><creatorcontrib>Ordureau, Alban</creatorcontrib><creatorcontrib>Stevens, Michael</creatorcontrib><creatorcontrib>Francois Singh</creatorcontrib><creatorcontrib>Nirujogi, Raja S.</creatorcontrib><creatorcontrib>Gierlinski, Marek</creatorcontrib><creatorcontrib>Barini, Erica</creatorcontrib><creatorcontrib>Rickwood, Mollie L.</creatorcontrib><creatorcontrib>Prescott, Alan</creatorcontrib><creatorcontrib>Toth, Rachel</creatorcontrib><creatorcontrib>Ganley, Ian G.</creatorcontrib><creatorcontrib>J. Wade Harper</creatorcontrib><creatorcontrib>Miratul M. K. Muqit</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Antico, Odetta</au><au>Ordureau, Alban</au><au>Stevens, Michael</au><au>Francois Singh</au><au>Nirujogi, Raja S.</au><au>Gierlinski, Marek</au><au>Barini, Erica</au><au>Rickwood, Mollie L.</au><au>Prescott, Alan</au><au>Toth, Rachel</au><au>Ganley, Ian G.</au><au>J. Wade Harper</au><au>Miratul M. K. Muqit</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1</title><date>2021-08-05</date><risdate>2021</risdate><abstract>How activation of PINK1 and Parkin leads to elimination of damaged mitochondria by mitophagy is largely based on cell lines with few studies in neurons. Herein we have undertaken proteomic analysis of mitochondria from mouse neurons to identify ubiquitylated substrates of endogenous Parkin. Comparative analysis with human iNeuron datasets revealed a subset of 49 PINK1 activation-dependent diGLY sites in 22 proteins conserved across mouse and human systems. We employ reconstitution assays to demonstrate direct ubiquitylation by Parkin in vitro. We also identified a subset of cytoplasmic proteins recruited to mitochondria that undergo PINK1 and Parkin independent ubiquitylation indicating the presence of alternate ubiquitin E3 ligase pathways that are activated by mitochondrial depolarisation in neurons. Finally we have developed an online resource to search for ubiquitin sites and enzymes in mitochondria of neurons, MitoNUb. These findings will aid future studies to understand Parkin activation in neuronal subtypes. FILE DECRIPTIONS Figure 1C: Immunoblots for PINK1 signaling in PINK1 WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in Figure1C_GAPDH.tif Parkin shown in Figure1C_Parkin.tif Phospho-Ser65 Parkin shown in Figure1C_ParkinPSer65.tif PINK1 shown in Figure1C_PINK1.tif (immunoprecipitation) Rab8A shown in Figure1C_Rab8A.tif Phospho-Ser111 Rab8A shown in Figure1C_Rab8APSer111.tif Ubiquitin shown in Figure1C_ S10A_Ubiquitin.tif (same blot used for Figure_S10A, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in Figure1C_S10A_UbiquitinPSer65.tif (same blot used for Figure_S10A, Halo-multiDSK pull-down) Figure 4A: Immunoblots for time-course of Parkin-dependent substrates in C57BL/6J neurons. Scans of X-ray film: CISD1 shown in Figure4A_CISD1.tif (Halo-multiDSK pull-down) Figure4A_INPUT_CISD1.tif (INPUT) CPT1α shown in Figure4A_ CPT1a.tif (Halo-multiDSK pull-down) Figure4A_INPUT_CPT1a.tif (INPUT) Ubiquitin shown in Figure4A_Ubiquitin.tif (Halo-multiDSK pull-down) Figure4A_INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure4_UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure4A_INPUT_GAPDH.tif (INPUT) Figure 4B: Immunoblots for validation of Parkin-dependent substrates in PARKIN WT and KO neurons. Scans of X-ray film: CISD1 shown in Figure4B_CISD1.tif (Halo-multiDSK pull-down) (bottom blot) Figure4B_INPUT_CPT1a_CISD1.tif (INPUT) CPT1α shown in Figure4B_ CPT1a.tif (Halo-multiDSK pull-down) (top blot) Figure4B_INPUT_CPT1a_CISD1.tif ( (INPUT) Ubiquitin shown in Figure4B_Ubiquitin.tif (Halo-multiDSK pull-down) Figure4B_INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure4B_UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure4B_INPUT_GAPDH.tif (INPUT) Figure 5A: Immunoblots for in vitro reconstitution assay in PINK1 WT and KO mouse embryonic fibroblasts. Scans of X-ray film: CISD1shown in Figure5A_CISD1.tif CPT1α shown in Figure5A_ CPT1a.tif CYB5B shown in Figure5A_CYB5B.tif HK1 shown in Figure5A_HK1.tif MFN2 shown in Figure5A_MFN2.tif VDAC shown in Figure5A_VDAC.tif Phospho-Ser65 Parkin shown in Figure5A_ParkinPSer65.tif Parkin shown in Figure5A_Parkin.tif Ubiquitin shown in Figure5A_Ubiquitin.tif Phospho-Ser65 Ubiquitin shown in Figure5A_UbiquitinPSer65.tif Figure 5B: Immunoblots for validation of Parkin-dependent substrates in in vitro studies. Scans of Western blots (LI-COR): CPT1α shown in Figure5B_ CPT1 α_800nm.tif Flag-Ub (CPT1α) shown in Figure5B_ CPT1 α_Flag_800nm.tif His (CPT1α) shown in Figure5B_ CPT1 α_His_800nm.tif Miro1 shown in Figure5B_Miro1_800nm.tif Flag-Ub (Miro1) shown in Figure5B_ Miro1_Flag_800nm.tif His (Miro1) shown in Figure5B_ Miro1_His_800nm.tif Figure 5C: Immunoblots for time-course of CPT1α ubiquitylation in in vitro studies. Scans of Western blots (LI-COR): CPT1α shown in top blot: Figure5C_Flag_CPT1α_800nm.tif Flag-Ub shown in bottom blot: Figure5C_Flag_CPT1α_800nm.tif His shown in Figure5C_ CPT1 α_His_800nm.tif Figure S3A: Immunoblots for PINK1 signaling in C57BL/6J neurons. Scans of X-ray film: GAPDH shown in FigureS3A_GAPDH.tif Parkin shown in FigureS3A_Parkin.tif Phospho-Ser65 Parkin shown in FigureS3A_ParkinPSer65.tif PINK1 shown in FigureS3A_PINK1.tif (immunoprecipitation) Rab8A shown in FigureS3A_Rab8A.tif Phospho-Ser111 Rab8A shown in FigureS3A_Rab8APSer111.tif Ubiquitin shown in FigureS3A_Ubiquitin.tif (same blot used for Figure_4A, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in FigureS3A_UbiquitinPSer65.tif (same blot used for Figure_4A, Halo-multiDSK pull-down) Phospho-Ser111 Rab8A and Phospho-Ser65 Parkin also shown in FigureS3A_ParkinPSer65_Rab8APSer111.tif Figure S3B: Immunoblots for comparison of Halo-multiDSK and Halo-TUBE in C57BL/6J neurons. Ubiquitin shown in FigureS9_S3_Ubiquitin.tif (same blot used for Figure_S9) Phospho-Ser65 Ubiquitin shown in FigureS9_S3_UbiquitinPSer65.tif (same blot used for Figure_S9) Figure S3C: Immunoblots for PINK1 signaling in Parkin WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS3C_GAPDH.tif Parkin shown in FigureS3C_Parkin.tif Phospho-Ser65 Parkin shown in FigureS3C_ParkinPSer65.tif PINK1 shown in FigureS3C_PINK1.tif (immunoprecipitation) Rab8A shown in FigureS3C_Rab8A.tif Phospho-Ser111 Rab8A shown in FigureS3C_Rab8APSer111.tif Ubiquitin shown in FigureS3C_ Ubiquitin.tif (same blot used for Figure_4B, Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in FigureS3C_ UbiquitinPSer65.tif (same blot used for Figure_4B, Halo-multiDSK pull-down) Figure S4: Immunoblots for PINK-Parkin signaling in VPS35 D620N mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS4_GAPDH.tif Parkin shown in FigureS4_Parkin.tif Phospho-Ser65 Parkin shown in FigureS4_ParkinPSer65.tif Rab8A shown in FigureS4_Rab8A.tif Phospho-Ser111 Rab8A shown in FigureS4_Rab8APSer111.tif CISD1 shown in FigureS4_ CISD1.tif (Halo-UBQLN1 pull-down) Phospho-Ser65 Ubiquitin shown in FigureS4_ UbiquitinPSer65.tif (Halo-UBQLN1 pull-down) VPS35 shown in FigureS4_VPS35.tif Scan of Memcode shown in FigureS4_Memcode.tif Figure S6: Immunoblots for biochemical analysis in C56BL/6J mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS6_GAPDH.tif Phospho-Ser65 Ubiquitin shown in FigureS6_ UbiquitinPSer65.tif Figure S8: Immunoblots for biochemical analysis in PINK1 WT and KO mouse cortical neurons. Scans of X-ray film: GAPDH shown in FigureS8_GAPDH.tif Phospho-Ser65 Ubiquitin shown in FigureS8_ UbiquitinPSer65.tif Figure S9: Immunoblots for biochemical analysis of ubiquitylated target in C56BL/6J mouse cortical neurons. Membrane-enriched lysate subjected to ubiquitin capture using UBQLN1(TUBE), multiDSK and mutant multiDSK pull-down (Illustration of sample loading in figures FigureS9_ACSL6,_MFN2, _UbiquitinPSer65, _NAV1.7). Scans of X-ray film: Ubiquitin shown in FigureS9_S3_Ubiquitin.tif (same blot used for Figure_S3B) Phospho-Ser65 Ubiquitin shown in FigureS9_S3_UbiquitinPSer65.tif (same blot used for Figure_S3B) ABCD3 shown in FigureS9_ABCD3.tif ACSL1shown in FigureS9_ ACSL1.tif ACSL6 shown in FigureS9_ACSL6.tif AGPAT5 shown in FigureS9_AGPAT5.tif ARHGAP33 shown in FigureS9_ARHGAP33.tif ATAD1 shown in FigureS9_ATAD1.tif CAD shown in FigureS9_ CAD.tif CAMK2A shown in FigureS9_CAMK2A.tif CAMK2B shown in FigureS9_CAMK2B.tif CDK16 shown in FigureS9_CDK16.tif CISD1shown in FigureS9_CISD1.tif CNN3 shown in FigureS9_CNN3.tif CPT1α shown in FigureS9_ CPT1A.tif CYB5B shown in FigureS9_CYB5B.tif CYB5R3 shown in FigureS9_CYB5R3.tif DCAKD shown in FigureS9_DCAKD.tif DCAMKL2 shown in FigureS9_DCAMKL2.tif FAM213A shown in FigureS9_FAM213A.tif FBXO41 shown in FigureS9_FBXO41.tif GK shown in FigureS9_GK.tif HK1 shown in FigureS9_HK1.tif HSDL1 shown in FigureS9_HSDL1.tif MAO-A shown in FigureS9_MAOA.tif MAO-B shown in FigureS9_MAOB.tif MAPRE2 shown in FigureS9_MAPRE2.tif MARC2 shown in FigureS9_MARC2.tif MFN1 shown in FigureS9_MFN1.tif MFN2 shown in FigureS9_MFN2.tif NAV1.7 shown in FigureS9_NAV1.7.tif P23 shown in FigureS9_p23.tif PRKCG shown in FigureS9_PRKCG.tif RAB5C shown in FigureS9_Rab5c.tif RHOT2 shown in FigureS9_RHOT2.tif RIMS4 shown in FigureS9_RIMS4.tif RUFY3 shown in FigureS9_RUFY3.tif SH3BP4 shown in FigureS9_SH3BP4.tif SNX3 shown in FigureS9_SNX3.tif TDRKH shown in FigureS9_TDRKH.tif TOMM70 shown in FigureS9_TOMM70.tif Figure S10A: Immunoblots for validation of Parkin-dependent substrates in PINK1 WT and KO neurons. Scans of X-ray film: CISD1 shown in Figure S10A _CISD1.tif (Halo-multiDSK pull-down) Figure S10A _INPUT_CISD1.tif (INPUT) CPT1α shown in Figure S10A _ CPT1A.tif (Halo-multiDSK pull-down) Figure S10A _INPUT_ CPT1A.tif (INPUT) Ubiquitin shown in Figure1C_ S10A _Ubiquitin.tif (same blot used for FigureS1C, Halo-multiDSK pull-down) Figure S10A _INPUT_Ubiquitin.tif (INPUT) Phospho-Ser65 Ubiquitin shown in Figure1C_ S10A_UbiquitinPSer65.tif (same blot used for FigureS1C, Halo-multiDSK pull-down) GAPDH Shown in Figure S10A _INPUT_GAPDH.tif (INPUT) Figure S10B: Immunoblots for time-course of Parkin-dependent substrates in SH-SY5Y cells. Scans of X-ray film: CISD1 shown in Figure S10B _CISD1.tif (Halo-multiDSK pull-down) CPT1α shown in Figure S10B _ CPT1A.tif (Halo-multiDSK pull-down) Ubiquitin shown in Figure S10B _Ubiquitin.tif (Halo-multiDSK pull-down) Phospho-Ser65 Ubiquitin shown in Figure S10B _UbiquitinPSer65.tif (Halo-multiDSK pull-down) GAPDH Shown in Figure S10B _GAPDH.tif Parkin shown in FigureS10B_Parkin.tif Phospho-Ser65 Parkin shown in FigureS10B_ParkinPSer65.tif PINK1 shown in FigureS10B_PINK1.tif OPA1 shown in FigureS10B_OPA1.tif Figure S11: Immunoblots for in vitro reconstitution assay in HeLa cells. Scans of X-ray film: CISD1shown in FigureS11_CISD1.tif CPT1α shown in FigureS11_ CPT1a.tif CYB5B shown in FigureS11_CYB5B.tif HK1 shown in FigureS11_HK1.tif MFN2 shown in FigureS11_MFN2.tif VDAC shown in FigureS11_VDAC.tif Phospho-Ser65 Parkin shown in FigureS11_ParkinPSer65.tif Parkin shown in FigureS11_Parkin.tif Ub</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.5163705</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.5163705
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_5163705
source DataCite
subjects Neurons, PINK1, Parkin, ubiquitin, Parkinson's disease, Mitochondria
title Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Antico,%20Odetta&rft.date=2021-08-05&rft_id=info:doi/10.5281/zenodo.5163705&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_5163705%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true