Mowjaz Multi-Topic Labelling Task

Mowjaz is an Arabic topical content aggregation mobile application for news, sport, entertainment and other topics that users can follow. Mowjaz search engine and recommendation system is built on top of NLP/NLU machine learning APIs that distinguish it from any other News and entertainment applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Al-Ayyoub, Mahmoud, Selawi, Haitham, Zaghlol, Mohamed, Al-Natsheh, Hussein, Suileman, Samer, Fadel, Ali, Badawi, Riham, Morsy, Ahmed, Ibraheem Tuffaha, Mohannad Aljarrah
Format: Dataset
Sprache:ara
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Al-Ayyoub, Mahmoud
Selawi, Haitham
Zaghlol, Mohamed
Al-Natsheh, Hussein
Suileman, Samer
Fadel, Ali
Badawi, Riham
Morsy, Ahmed
Ibraheem Tuffaha
Mohannad Aljarrah
description Mowjaz is an Arabic topical content aggregation mobile application for news, sport, entertainment and other topics that users can follow. Mowjaz search engine and recommendation system is built on top of NLP/NLU machine learning APIs that distinguish it from any other News and entertainment applications available, mainly focusing on the users having the best experience and receiving content that is of their interest. One of Mowjaz’s top AI powered models is Topic Multi-Labelling, which is the focus of this shared task. This model is basically used to classify articles based on their topics. Additionally, the model predicts multiple topics in one article and is categorized to all possible topics that are present within its content. Mowjaz's topics are classified into ten categories and an article can be classified under as many topics as it covers. This model helps users get and display the most relevant news to their interests. The enhanced user experience that Mowjaz offers makes one news article be classified and shown under all the different topics that it holds. Mowjaz Multi-Topic Labelling Task (just.edu.jo)
doi_str_mv 10.5281/zenodo.4554590
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_4554590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_4554590</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_45545903</originalsourceid><addsrcrecordid>eNpjYBAzNNAzNbIw1K9KzctPydczMTU1MbU04GRQ9M0vz0qsUvAtzSnJ1A3JL8hMVvBJTErNycnMS1cISSzO5mFgTUvMKU7lhdLcDHpuriHOHropiSWJyZklqfEFRZm5iUWV8YYG8SA74iF2xEPtMCZZAwCqvzUD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Mowjaz Multi-Topic Labelling Task</title><source>DataCite</source><creator>Al-Ayyoub, Mahmoud ; Selawi, Haitham ; Zaghlol, Mohamed ; Al-Natsheh, Hussein ; Suileman, Samer ; Fadel, Ali ; Badawi, Riham ; Morsy, Ahmed ; Ibraheem Tuffaha ; Mohannad Aljarrah</creator><creatorcontrib>Al-Ayyoub, Mahmoud ; Selawi, Haitham ; Zaghlol, Mohamed ; Al-Natsheh, Hussein ; Suileman, Samer ; Fadel, Ali ; Badawi, Riham ; Morsy, Ahmed ; Ibraheem Tuffaha ; Mohannad Aljarrah</creatorcontrib><description>Mowjaz is an Arabic topical content aggregation mobile application for news, sport, entertainment and other topics that users can follow. Mowjaz search engine and recommendation system is built on top of NLP/NLU machine learning APIs that distinguish it from any other News and entertainment applications available, mainly focusing on the users having the best experience and receiving content that is of their interest. One of Mowjaz’s top AI powered models is Topic Multi-Labelling, which is the focus of this shared task. This model is basically used to classify articles based on their topics. Additionally, the model predicts multiple topics in one article and is categorized to all possible topics that are present within its content. Mowjaz's topics are classified into ten categories and an article can be classified under as many topics as it covers. This model helps users get and display the most relevant news to their interests. The enhanced user experience that Mowjaz offers makes one news article be classified and shown under all the different topics that it holds. Mowjaz Multi-Topic Labelling Task (just.edu.jo)</description><identifier>DOI: 10.5281/zenodo.4554590</identifier><language>ara</language><publisher>Zenodo</publisher><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9372-9076 ; 0000-0003-0665-5959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.4554590$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Al-Ayyoub, Mahmoud</creatorcontrib><creatorcontrib>Selawi, Haitham</creatorcontrib><creatorcontrib>Zaghlol, Mohamed</creatorcontrib><creatorcontrib>Al-Natsheh, Hussein</creatorcontrib><creatorcontrib>Suileman, Samer</creatorcontrib><creatorcontrib>Fadel, Ali</creatorcontrib><creatorcontrib>Badawi, Riham</creatorcontrib><creatorcontrib>Morsy, Ahmed</creatorcontrib><creatorcontrib>Ibraheem Tuffaha</creatorcontrib><creatorcontrib>Mohannad Aljarrah</creatorcontrib><title>Mowjaz Multi-Topic Labelling Task</title><description>Mowjaz is an Arabic topical content aggregation mobile application for news, sport, entertainment and other topics that users can follow. Mowjaz search engine and recommendation system is built on top of NLP/NLU machine learning APIs that distinguish it from any other News and entertainment applications available, mainly focusing on the users having the best experience and receiving content that is of their interest. One of Mowjaz’s top AI powered models is Topic Multi-Labelling, which is the focus of this shared task. This model is basically used to classify articles based on their topics. Additionally, the model predicts multiple topics in one article and is categorized to all possible topics that are present within its content. Mowjaz's topics are classified into ten categories and an article can be classified under as many topics as it covers. This model helps users get and display the most relevant news to their interests. The enhanced user experience that Mowjaz offers makes one news article be classified and shown under all the different topics that it holds. Mowjaz Multi-Topic Labelling Task (just.edu.jo)</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAzNNAzNbIw1K9KzctPydczMTU1MbU04GRQ9M0vz0qsUvAtzSnJ1A3JL8hMVvBJTErNycnMS1cISSzO5mFgTUvMKU7lhdLcDHpuriHOHropiSWJyZklqfEFRZm5iUWV8YYG8SA74iF2xEPtMCZZAwCqvzUD</recordid><startdate>20210221</startdate><enddate>20210221</enddate><creator>Al-Ayyoub, Mahmoud</creator><creator>Selawi, Haitham</creator><creator>Zaghlol, Mohamed</creator><creator>Al-Natsheh, Hussein</creator><creator>Suileman, Samer</creator><creator>Fadel, Ali</creator><creator>Badawi, Riham</creator><creator>Morsy, Ahmed</creator><creator>Ibraheem Tuffaha</creator><creator>Mohannad Aljarrah</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0001-9372-9076</orcidid><orcidid>https://orcid.org/0000-0003-0665-5959</orcidid></search><sort><creationdate>20210221</creationdate><title>Mowjaz Multi-Topic Labelling Task</title><author>Al-Ayyoub, Mahmoud ; Selawi, Haitham ; Zaghlol, Mohamed ; Al-Natsheh, Hussein ; Suileman, Samer ; Fadel, Ali ; Badawi, Riham ; Morsy, Ahmed ; Ibraheem Tuffaha ; Mohannad Aljarrah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_45545903</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>ara</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Al-Ayyoub, Mahmoud</creatorcontrib><creatorcontrib>Selawi, Haitham</creatorcontrib><creatorcontrib>Zaghlol, Mohamed</creatorcontrib><creatorcontrib>Al-Natsheh, Hussein</creatorcontrib><creatorcontrib>Suileman, Samer</creatorcontrib><creatorcontrib>Fadel, Ali</creatorcontrib><creatorcontrib>Badawi, Riham</creatorcontrib><creatorcontrib>Morsy, Ahmed</creatorcontrib><creatorcontrib>Ibraheem Tuffaha</creatorcontrib><creatorcontrib>Mohannad Aljarrah</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al-Ayyoub, Mahmoud</au><au>Selawi, Haitham</au><au>Zaghlol, Mohamed</au><au>Al-Natsheh, Hussein</au><au>Suileman, Samer</au><au>Fadel, Ali</au><au>Badawi, Riham</au><au>Morsy, Ahmed</au><au>Ibraheem Tuffaha</au><au>Mohannad Aljarrah</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Mowjaz Multi-Topic Labelling Task</title><date>2021-02-21</date><risdate>2021</risdate><abstract>Mowjaz is an Arabic topical content aggregation mobile application for news, sport, entertainment and other topics that users can follow. Mowjaz search engine and recommendation system is built on top of NLP/NLU machine learning APIs that distinguish it from any other News and entertainment applications available, mainly focusing on the users having the best experience and receiving content that is of their interest. One of Mowjaz’s top AI powered models is Topic Multi-Labelling, which is the focus of this shared task. This model is basically used to classify articles based on their topics. Additionally, the model predicts multiple topics in one article and is categorized to all possible topics that are present within its content. Mowjaz's topics are classified into ten categories and an article can be classified under as many topics as it covers. This model helps users get and display the most relevant news to their interests. The enhanced user experience that Mowjaz offers makes one news article be classified and shown under all the different topics that it holds. Mowjaz Multi-Topic Labelling Task (just.edu.jo)</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.4554590</doi><orcidid>https://orcid.org/0000-0001-9372-9076</orcidid><orcidid>https://orcid.org/0000-0003-0665-5959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.4554590
ispartof
issn
language ara
recordid cdi_datacite_primary_10_5281_zenodo_4554590
source DataCite
title Mowjaz Multi-Topic Labelling Task
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Al-Ayyoub,%20Mahmoud&rft.date=2021-02-21&rft_id=info:doi/10.5281/zenodo.4554590&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_4554590%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true