FALL DATABASE

The database consists of falls and activities of daily living performed by two persons (person1 and person2) – each person performed all activities twice. Hence, the database consists of 72 video sequences, containing 40 falls and 32 activities of daily living. The different scenarios are adopted fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Planinc Rainer, Kampel, Martin
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Planinc Rainer
Kampel, Martin
description The database consists of falls and activities of daily living performed by two persons (person1 and person2) – each person performed all activities twice. Hence, the database consists of 72 video sequences, containing 40 falls and 32 activities of daily living. The different scenarios are adopted from Noury et al. [1] and are described in [2]. Use The dataset is freely available for non-commercial research use. Please also cite our paper [2] when using the dataset for your research. References [1] N. Noury, A. Fleury, P. Rumeau, a K. Bourke, G. O. Laighin, V. Rialle, and J. E. Lundy, “Fall detection – principles and methods.,” in Engineering in Medicine and Biology Society, 2007, vol. 2007, pp. 1663–1666. [2] Planinc R., Kampel M., “Robust Fall Detection by Combining 3D Data and Fuzzy Logic”, ACCV Workshop on Color Depth Fusion in Computer Vision, Daejeon, Korea, pp. 121-132, November 2012.
doi_str_mv 10.5281/zenodo.3886585
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_3886585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_3886585</sourcerecordid><originalsourceid>FETCH-LOGICAL-d795-6c3ed965845f1213ba13e8d9aaed92487f0a35e488384c146284089d8e217c743</originalsourceid><addsrcrecordid>eNotzj0LwjAYBOAsDlK7OvsHWvPZvBljbVUIONg9xCSFglqpXfTXW6nTwcEdD0JrgnNBgWw_8dGHPmcAhQCxRGmtjdnsdaN3-lKt0KJ1t1dM_5mgpq6a8piZ8-FUapMFqURWeBaDmvZctIQSdnWERQjKuammHGSLHRORAzDgnvCCAsegAkRKpJecJSifb4Mbne_GaJ9Dd3fD2xJsf0w7M-2fyb4_XDMx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>FALL DATABASE</title><source>DataCite</source><creator>Planinc Rainer ; Kampel, Martin</creator><creatorcontrib>Planinc Rainer ; Kampel, Martin</creatorcontrib><description>The database consists of falls and activities of daily living performed by two persons (person1 and person2) – each person performed all activities twice. Hence, the database consists of 72 video sequences, containing 40 falls and 32 activities of daily living. The different scenarios are adopted from Noury et al. [1] and are described in [2]. Use The dataset is freely available for non-commercial research use. Please also cite our paper [2] when using the dataset for your research. References [1] N. Noury, A. Fleury, P. Rumeau, a K. Bourke, G. O. Laighin, V. Rialle, and J. E. Lundy, “Fall detection – principles and methods.,” in Engineering in Medicine and Biology Society, 2007, vol. 2007, pp. 1663–1666. [2] Planinc R., Kampel M., “Robust Fall Detection by Combining 3D Data and Fuzzy Logic”, ACCV Workshop on Color Depth Fusion in Computer Vision, Daejeon, Korea, pp. 121-132, November 2012.</description><identifier>DOI: 10.5281/zenodo.3886585</identifier><language>eng</language><publisher>Zenodo</publisher><subject>fall detection</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5217-2854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.3886585$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Planinc Rainer</creatorcontrib><creatorcontrib>Kampel, Martin</creatorcontrib><title>FALL DATABASE</title><description>The database consists of falls and activities of daily living performed by two persons (person1 and person2) – each person performed all activities twice. Hence, the database consists of 72 video sequences, containing 40 falls and 32 activities of daily living. The different scenarios are adopted from Noury et al. [1] and are described in [2]. Use The dataset is freely available for non-commercial research use. Please also cite our paper [2] when using the dataset for your research. References [1] N. Noury, A. Fleury, P. Rumeau, a K. Bourke, G. O. Laighin, V. Rialle, and J. E. Lundy, “Fall detection – principles and methods.,” in Engineering in Medicine and Biology Society, 2007, vol. 2007, pp. 1663–1666. [2] Planinc R., Kampel M., “Robust Fall Detection by Combining 3D Data and Fuzzy Logic”, ACCV Workshop on Color Depth Fusion in Computer Vision, Daejeon, Korea, pp. 121-132, November 2012.</description><subject>fall detection</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2015</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNotzj0LwjAYBOAsDlK7OvsHWvPZvBljbVUIONg9xCSFglqpXfTXW6nTwcEdD0JrgnNBgWw_8dGHPmcAhQCxRGmtjdnsdaN3-lKt0KJ1t1dM_5mgpq6a8piZ8-FUapMFqURWeBaDmvZctIQSdnWERQjKuammHGSLHRORAzDgnvCCAsegAkRKpJecJSifb4Mbne_GaJ9Dd3fD2xJsf0w7M-2fyb4_XDMx</recordid><startdate>20150326</startdate><enddate>20150326</enddate><creator>Planinc Rainer</creator><creator>Kampel, Martin</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-5217-2854</orcidid></search><sort><creationdate>20150326</creationdate><title>FALL DATABASE</title><author>Planinc Rainer ; Kampel, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d795-6c3ed965845f1213ba13e8d9aaed92487f0a35e488384c146284089d8e217c743</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2015</creationdate><topic>fall detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Planinc Rainer</creatorcontrib><creatorcontrib>Kampel, Martin</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Planinc Rainer</au><au>Kampel, Martin</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>FALL DATABASE</title><date>2015-03-26</date><risdate>2015</risdate><abstract>The database consists of falls and activities of daily living performed by two persons (person1 and person2) – each person performed all activities twice. Hence, the database consists of 72 video sequences, containing 40 falls and 32 activities of daily living. The different scenarios are adopted from Noury et al. [1] and are described in [2]. Use The dataset is freely available for non-commercial research use. Please also cite our paper [2] when using the dataset for your research. References [1] N. Noury, A. Fleury, P. Rumeau, a K. Bourke, G. O. Laighin, V. Rialle, and J. E. Lundy, “Fall detection – principles and methods.,” in Engineering in Medicine and Biology Society, 2007, vol. 2007, pp. 1663–1666. [2] Planinc R., Kampel M., “Robust Fall Detection by Combining 3D Data and Fuzzy Logic”, ACCV Workshop on Color Depth Fusion in Computer Vision, Daejeon, Korea, pp. 121-132, November 2012.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.3886585</doi><orcidid>https://orcid.org/0000-0002-5217-2854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.3886585
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_3886585
source DataCite
subjects fall detection
title FALL DATABASE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Planinc%20Rainer&rft.date=2015-03-26&rft_id=info:doi/10.5281/zenodo.3886585&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_3886585%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true