BDS data of the CAFP and FNAFP assessment in Vinderhoute, Belgium in 2018 (compressed)
Barotrauma Detection Sensors (BDS) passing the Fairbanks Nijhuis Axial Flow Pumps (FNAFPs) and Conventional Axial Flow Pumps (CAFPs) of the Duivelsput pumping station (Vinderhoute, Oude Kale, Belgium). Here the compressed data is given of the CAFP (Old_Axial_n_6), the FNAFP at low rpm (Pump_40Hz_n_6...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Barotrauma Detection Sensors (BDS) passing the Fairbanks Nijhuis Axial Flow Pumps (FNAFPs) and Conventional Axial Flow Pumps (CAFPs) of the Duivelsput pumping station (Vinderhoute, Oude Kale, Belgium). Here the compressed data is given of the CAFP (Old_Axial_n_6), the FNAFP at low rpm (Pump_40Hz_n_64), the FNAFP at high rpm (Pump_47Hz_n_51), the control FNAFP at low rpm (Pump_40Hz_Control_n_13) and the control FNAFP at high rpm (Pump_47Hz_Control_n_15). The following description is adopted from https://biorobotics.pages.taltech.ee/bds/en/description/.
The BDS saves the sensor data in a row-column format. Each row represents one time step, and each of the 27 columns corresponds to a different variable. The data are logged to the file at 100 Hz (the magnetometer is 20 Hz). The following table provides an overview of the sensor data structure, and the physical units are given in brackets.
The calibration status for each of the three sensor types (accelerometer, rate gyro and magnetometer) is given on a scale from 0 (no calibration) to 3 (perfect calibration). The user can improve the calibration status by rotating the sensor slowly around all three axis (takes ca. 20 seconds), and then letting it stand on the flat end cap (hemisphere facing up) for 10 seconds. The sum of the calibration status represents the "total calibration" of the BDS, and is the sum of the three calibration values from each sensor, and ranges from 0 to 9.
Col 1
Col 2
Col 3
Col 4
Col 5
Col 6
Col 7
Col 8
Col 9
Col 10
Col 11
Col 12
Col 13
Col 14
Col 15
Col 16
Col 17
Col 18
Col 19
Col 20
Col 21
Col 22
Col 23
Col 24
Col 25
Col 26
Col 27
Time [ms]
PL [hPa]
TL [C]
PC [hPa]
TC [C]
PR [hPa]
TR [C]
EX [deg]
EY [deg]
EZ [deg]
QX [-]
QY [-]
QZ [-]
QW [-]
MX [microT]
MY [microT]
MZ [microT]
AX [m/s2]
AY [m/s2]
AZ [m/s2]
**RX [rad/s]
RY [rad/s]
RZ [rad/s]
CSM
CSA
CSR
CSTOT
Timestamp
Pressureleft
Lefttemp
Pressurecenter
Centertemp
Pressureright
Righttemp
Eulerangle X
Eulerangle Y
Eulerangle Z
Quat. X
Quat. Y
Quat. Z
Quat. W
Magnet. X
Magnet. Y
Magnet. Z
Dynamiclinearaccel. X
Dynamiclinearaccel. Y
Dynamiclinearaccel. Z
Rategyro X
Rategyro Y
Rategyro Z
Calibrationstatusmagnet. (0-3)
Calibrationstatusaccel. (0-3)
Calibrationstatusgyro. (0-3)
Sum calibrationstatus (0-9)
Sensor data example:
Time [ms]
PL [hPa]
TL [C]
PC [hPa]
TC [C]
PR [hPa]
TR [C]
EX [deg]
EY [deg]
EZ [deg]
QX [-]
QY [-]
QZ [-]
QW [-]
MX [microT]
MY [microT]
MZ [microT]
AX [m/s2]
AY [m/s2]
AZ [m/s2]
RX [rad/s]
RY [rad/s]
RZ [rad/s]
CSM |
---|---|
DOI: | 10.5281/zenodo.14160722 |