Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript

Example Stim circuits for Honeycomb quantum memory experiments with defective qubits. Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations. Please note that the example circuits p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McLauchlan, Campbell, Gehér, György P., Moylett, Alexandra E.
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator McLauchlan, Campbell
Gehér, György P.
Moylett, Alexandra E.
description Example Stim circuits for Honeycomb quantum memory experiments with defective qubits. Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations. Please note that the example circuits presented here are constructed by sampling defective qubits according to an iid distribution, with a single parameter defining the probability of an individual qubit being defective. In general a circuit which has a higher probability of each qubit being defective will perform worse than a circuit which has a lower probability of each qubit being defective. However, this does not necessarily mean that the specific circuits presented here will see that behaviour, as these are just individual samples from a large distribution.
doi_str_mv 10.5281/zenodo.11241875
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_11241875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_11241875</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_112418753</originalsourceid><addsrcrecordid>eNqVjrtuAjEQRd2kQAk17XRU2cU8BG1EWNHQAL1lvLMw0tqG8awQfD2OAh9AdW9xH0epgR4Vs_FCl3cMsY6F1uOpXsxnPSU7IQ-O2HUkCZrIMPxxLnofaysUjlDZA5PLPgb4xQZdjmVbtfHSocAy1pjgSnKCDQXytoW15fpqGWGLl44YPQZJQ_A2dMkxneVLfTS2Tdh_6qcqq9V-uf7Ol9aRoDlzXuKb0SPzx23-uc2Le_J-4wGAy1To</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript</title><source>DataCite</source><creator>McLauchlan, Campbell ; Gehér, György P. ; Moylett, Alexandra E.</creator><creatorcontrib>McLauchlan, Campbell ; Gehér, György P. ; Moylett, Alexandra E.</creatorcontrib><description>Example Stim circuits for Honeycomb quantum memory experiments with defective qubits. Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations. Please note that the example circuits presented here are constructed by sampling defective qubits according to an iid distribution, with a single parameter defining the probability of an individual qubit being defective. In general a circuit which has a higher probability of each qubit being defective will perform worse than a circuit which has a lower probability of each qubit being defective. However, this does not necessarily mean that the specific circuits presented here will see that behaviour, as these are just individual samples from a large distribution.</description><identifier>DOI: 10.5281/zenodo.11241875</identifier><language>eng</language><publisher>Zenodo</publisher><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0163-5262 ; 0000-0003-1499-3229 ; 0000-0001-5848-291X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,1895</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.11241875$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>McLauchlan, Campbell</creatorcontrib><creatorcontrib>Gehér, György P.</creatorcontrib><creatorcontrib>Moylett, Alexandra E.</creatorcontrib><title>Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript</title><description>Example Stim circuits for Honeycomb quantum memory experiments with defective qubits. Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations. Please note that the example circuits presented here are constructed by sampling defective qubits according to an iid distribution, with a single parameter defining the probability of an individual qubit being defective. In general a circuit which has a higher probability of each qubit being defective will perform worse than a circuit which has a lower probability of each qubit being defective. However, this does not necessarily mean that the specific circuits presented here will see that behaviour, as these are just individual samples from a large distribution.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrtuAjEQRd2kQAk17XRU2cU8BG1EWNHQAL1lvLMw0tqG8awQfD2OAh9AdW9xH0epgR4Vs_FCl3cMsY6F1uOpXsxnPSU7IQ-O2HUkCZrIMPxxLnofaysUjlDZA5PLPgb4xQZdjmVbtfHSocAy1pjgSnKCDQXytoW15fpqGWGLl44YPQZJQ_A2dMkxneVLfTS2Tdh_6qcqq9V-uf7Ol9aRoDlzXuKb0SPzx23-uc2Le_J-4wGAy1To</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>McLauchlan, Campbell</creator><creator>Gehér, György P.</creator><creator>Moylett, Alexandra E.</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-0163-5262</orcidid><orcidid>https://orcid.org/0000-0003-1499-3229</orcidid><orcidid>https://orcid.org/0000-0001-5848-291X</orcidid></search><sort><creationdate>20240524</creationdate><title>Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript</title><author>McLauchlan, Campbell ; Gehér, György P. ; Moylett, Alexandra E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_112418753</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>McLauchlan, Campbell</creatorcontrib><creatorcontrib>Gehér, György P.</creatorcontrib><creatorcontrib>Moylett, Alexandra E.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McLauchlan, Campbell</au><au>Gehér, György P.</au><au>Moylett, Alexandra E.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript</title><date>2024-05-24</date><risdate>2024</risdate><abstract>Example Stim circuits for Honeycomb quantum memory experiments with defective qubits. Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations. Please note that the example circuits presented here are constructed by sampling defective qubits according to an iid distribution, with a single parameter defining the probability of an individual qubit being defective. In general a circuit which has a higher probability of each qubit being defective will perform worse than a circuit which has a lower probability of each qubit being defective. However, this does not necessarily mean that the specific circuits presented here will see that behaviour, as these are just individual samples from a large distribution.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.11241875</doi><orcidid>https://orcid.org/0000-0003-0163-5262</orcidid><orcidid>https://orcid.org/0000-0003-1499-3229</orcidid><orcidid>https://orcid.org/0000-0001-5848-291X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.11241875
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_11241875
source DataCite
title Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T21%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=McLauchlan,%20Campbell&rft.date=2024-05-24&rft_id=info:doi/10.5281/zenodo.11241875&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_11241875%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true