Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript
Example Stim circuits for Honeycomb quantum memory experiments with defective qubits. Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations. Please note that the example circuits p...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | McLauchlan, Campbell Gehér, György P. Moylett, Alexandra E. |
description | Example Stim circuits for Honeycomb quantum memory experiments with defective qubits.
Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations.
Please note that the example circuits presented here are constructed by sampling defective qubits according to an iid distribution, with a single parameter defining the probability of an individual qubit being defective. In general a circuit which has a higher probability of each qubit being defective will perform worse than a circuit which has a lower probability of each qubit being defective. However, this does not necessarily mean that the specific circuits presented here will see that behaviour, as these are just individual samples from a large distribution. |
doi_str_mv | 10.5281/zenodo.11241875 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_11241875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_11241875</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_112418753</originalsourceid><addsrcrecordid>eNqVjrtuAjEQRd2kQAk17XRU2cU8BG1EWNHQAL1lvLMw0tqG8awQfD2OAh9AdW9xH0epgR4Vs_FCl3cMsY6F1uOpXsxnPSU7IQ-O2HUkCZrIMPxxLnofaysUjlDZA5PLPgb4xQZdjmVbtfHSocAy1pjgSnKCDQXytoW15fpqGWGLl44YPQZJQ_A2dMkxneVLfTS2Tdh_6qcqq9V-uf7Ol9aRoDlzXuKb0SPzx23-uc2Le_J-4wGAy1To</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript</title><source>DataCite</source><creator>McLauchlan, Campbell ; Gehér, György P. ; Moylett, Alexandra E.</creator><creatorcontrib>McLauchlan, Campbell ; Gehér, György P. ; Moylett, Alexandra E.</creatorcontrib><description>Example Stim circuits for Honeycomb quantum memory experiments with defective qubits.
Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations.
Please note that the example circuits presented here are constructed by sampling defective qubits according to an iid distribution, with a single parameter defining the probability of an individual qubit being defective. In general a circuit which has a higher probability of each qubit being defective will perform worse than a circuit which has a lower probability of each qubit being defective. However, this does not necessarily mean that the specific circuits presented here will see that behaviour, as these are just individual samples from a large distribution.</description><identifier>DOI: 10.5281/zenodo.11241875</identifier><language>eng</language><publisher>Zenodo</publisher><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0163-5262 ; 0000-0003-1499-3229 ; 0000-0001-5848-291X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,1895</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.11241875$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>McLauchlan, Campbell</creatorcontrib><creatorcontrib>Gehér, György P.</creatorcontrib><creatorcontrib>Moylett, Alexandra E.</creatorcontrib><title>Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript</title><description>Example Stim circuits for Honeycomb quantum memory experiments with defective qubits.
Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations.
Please note that the example circuits presented here are constructed by sampling defective qubits according to an iid distribution, with a single parameter defining the probability of an individual qubit being defective. In general a circuit which has a higher probability of each qubit being defective will perform worse than a circuit which has a lower probability of each qubit being defective. However, this does not necessarily mean that the specific circuits presented here will see that behaviour, as these are just individual samples from a large distribution.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrtuAjEQRd2kQAk17XRU2cU8BG1EWNHQAL1lvLMw0tqG8awQfD2OAh9AdW9xH0epgR4Vs_FCl3cMsY6F1uOpXsxnPSU7IQ-O2HUkCZrIMPxxLnofaysUjlDZA5PLPgb4xQZdjmVbtfHSocAy1pjgSnKCDQXytoW15fpqGWGLl44YPQZJQ_A2dMkxneVLfTS2Tdh_6qcqq9V-uf7Ol9aRoDlzXuKb0SPzx23-uc2Le_J-4wGAy1To</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>McLauchlan, Campbell</creator><creator>Gehér, György P.</creator><creator>Moylett, Alexandra E.</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-0163-5262</orcidid><orcidid>https://orcid.org/0000-0003-1499-3229</orcidid><orcidid>https://orcid.org/0000-0001-5848-291X</orcidid></search><sort><creationdate>20240524</creationdate><title>Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript</title><author>McLauchlan, Campbell ; Gehér, György P. ; Moylett, Alexandra E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_112418753</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>McLauchlan, Campbell</creatorcontrib><creatorcontrib>Gehér, György P.</creatorcontrib><creatorcontrib>Moylett, Alexandra E.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McLauchlan, Campbell</au><au>Gehér, György P.</au><au>Moylett, Alexandra E.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript</title><date>2024-05-24</date><risdate>2024</risdate><abstract>Example Stim circuits for Honeycomb quantum memory experiments with defective qubits.
Because accommodating each sample of fabrication defects requires a separate Stim circuit, we only provide example circuits rather than all Stim circuits used in simulations.
Please note that the example circuits presented here are constructed by sampling defective qubits according to an iid distribution, with a single parameter defining the probability of an individual qubit being defective. In general a circuit which has a higher probability of each qubit being defective will perform worse than a circuit which has a lower probability of each qubit being defective. However, this does not necessarily mean that the specific circuits presented here will see that behaviour, as these are just individual samples from a large distribution.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.11241875</doi><orcidid>https://orcid.org/0000-0003-0163-5262</orcidid><orcidid>https://orcid.org/0000-0003-1499-3229</orcidid><orcidid>https://orcid.org/0000-0001-5848-291X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.5281/zenodo.11241875 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_5281_zenodo_11241875 |
source | DataCite |
title | Stim circuits for 'Accommodating Fabrication Defects on Floquet Codes with Minimal Hardware Requirements' manuscript |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T21%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=McLauchlan,%20Campbell&rft.date=2024-05-24&rft_id=info:doi/10.5281/zenodo.11241875&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_11241875%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |