Polyconvex inelastic Constitutive Artificial Neural Networks: Source code and data

This dataset contains the source code of the polyconvex extension of the inelastic Constitutive Artificial Neural Network (iCANN) as well as the data for the examples from the publication: Holthusen, H., Lamm, L., Brepols, T., Reese, S., & E. Kuhl. Polyconvex inelastic Constitutive Artificial Ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Holthusen, Hagen, Lamm, Lukas, Brepols, Tim, Reese, Stefanie, Kuhl, Ellen
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Holthusen, Hagen
Lamm, Lukas
Brepols, Tim
Reese, Stefanie
Kuhl, Ellen
description This dataset contains the source code of the polyconvex extension of the inelastic Constitutive Artificial Neural Network (iCANN) as well as the data for the examples from the publication: Holthusen, H., Lamm, L., Brepols, T., Reese, S., & E. Kuhl. Polyconvex inelastic Constitutive Artificial Neural Networks.   Results: Discovering a model for the polymer VHB 4910 subjected to cyclic loading Here, we investigate the ability of the polyconvex iCANN to discover and learn a model for the material response of  VHB 4910 polymer subjected to cyclic loading at different stretch rates. The experimental data are taken from the literature: Hossain, M., Vu, D. K., & Steinmann, P. (2012). Experimental study and numerical modelling of VHB 4910 polymer. Computational Materials Science, 59, 65-74. https://doi.org/10.1016/j.commatsci.2012.02.027
doi_str_mv 10.5281/zenodo.11084353
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_11084353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_11084353</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_110843533</originalsourceid><addsrcrecordid>eNqVzr0KwjAUhuEsDqLOrucGbBtrobhJUZxE1D2E5BQO1hxJ02q9eq0_F-D0Dh8fPEJMZRJl81zGD3RsOZIyyRdplg7FYc9VZ9i1eAdyWOk6kIGC3auhCdQirHygkgzpCnbY-HfCjf25XsKRG28QDFsE7SxYHfRYDEpd1Tj5diTizfpUbGf9aCigunq6aN8pmahepT4q9VOl_z-eV2dIeQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Polyconvex inelastic Constitutive Artificial Neural Networks: Source code and data</title><source>DataCite</source><creator>Holthusen, Hagen ; Lamm, Lukas ; Brepols, Tim ; Reese, Stefanie ; Kuhl, Ellen</creator><creatorcontrib>Holthusen, Hagen ; Lamm, Lukas ; Brepols, Tim ; Reese, Stefanie ; Kuhl, Ellen</creatorcontrib><description>This dataset contains the source code of the polyconvex extension of the inelastic Constitutive Artificial Neural Network (iCANN) as well as the data for the examples from the publication: Holthusen, H., Lamm, L., Brepols, T., Reese, S., &amp; E. Kuhl. Polyconvex inelastic Constitutive Artificial Neural Networks.   Results: Discovering a model for the polymer VHB 4910 subjected to cyclic loading Here, we investigate the ability of the polyconvex iCANN to discover and learn a model for the material response of  VHB 4910 polymer subjected to cyclic loading at different stretch rates. The experimental data are taken from the literature: Hossain, M., Vu, D. K., &amp; Steinmann, P. (2012). Experimental study and numerical modelling of VHB 4910 polymer. Computational Materials Science, 59, 65-74. https://doi.org/10.1016/j.commatsci.2012.02.027</description><identifier>DOI: 10.5281/zenodo.11084353</identifier><language>eng</language><publisher>Zenodo</publisher><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6283-935X ; 0000-0003-4760-8358 ; 0000-0002-0700-8027 ; 0000-0002-1039-1776 ; 0000-0001-8830-6132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.11084353$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Holthusen, Hagen</creatorcontrib><creatorcontrib>Lamm, Lukas</creatorcontrib><creatorcontrib>Brepols, Tim</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Kuhl, Ellen</creatorcontrib><title>Polyconvex inelastic Constitutive Artificial Neural Networks: Source code and data</title><description>This dataset contains the source code of the polyconvex extension of the inelastic Constitutive Artificial Neural Network (iCANN) as well as the data for the examples from the publication: Holthusen, H., Lamm, L., Brepols, T., Reese, S., &amp; E. Kuhl. Polyconvex inelastic Constitutive Artificial Neural Networks.   Results: Discovering a model for the polymer VHB 4910 subjected to cyclic loading Here, we investigate the ability of the polyconvex iCANN to discover and learn a model for the material response of  VHB 4910 polymer subjected to cyclic loading at different stretch rates. The experimental data are taken from the literature: Hossain, M., Vu, D. K., &amp; Steinmann, P. (2012). Experimental study and numerical modelling of VHB 4910 polymer. Computational Materials Science, 59, 65-74. https://doi.org/10.1016/j.commatsci.2012.02.027</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVzr0KwjAUhuEsDqLOrucGbBtrobhJUZxE1D2E5BQO1hxJ02q9eq0_F-D0Dh8fPEJMZRJl81zGD3RsOZIyyRdplg7FYc9VZ9i1eAdyWOk6kIGC3auhCdQirHygkgzpCnbY-HfCjf25XsKRG28QDFsE7SxYHfRYDEpd1Tj5diTizfpUbGf9aCigunq6aN8pmahepT4q9VOl_z-eV2dIeQ</recordid><startdate>20240429</startdate><enddate>20240429</enddate><creator>Holthusen, Hagen</creator><creator>Lamm, Lukas</creator><creator>Brepols, Tim</creator><creator>Reese, Stefanie</creator><creator>Kuhl, Ellen</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-6283-935X</orcidid><orcidid>https://orcid.org/0000-0003-4760-8358</orcidid><orcidid>https://orcid.org/0000-0002-0700-8027</orcidid><orcidid>https://orcid.org/0000-0002-1039-1776</orcidid><orcidid>https://orcid.org/0000-0001-8830-6132</orcidid></search><sort><creationdate>20240429</creationdate><title>Polyconvex inelastic Constitutive Artificial Neural Networks: Source code and data</title><author>Holthusen, Hagen ; Lamm, Lukas ; Brepols, Tim ; Reese, Stefanie ; Kuhl, Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_110843533</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Holthusen, Hagen</creatorcontrib><creatorcontrib>Lamm, Lukas</creatorcontrib><creatorcontrib>Brepols, Tim</creatorcontrib><creatorcontrib>Reese, Stefanie</creatorcontrib><creatorcontrib>Kuhl, Ellen</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Holthusen, Hagen</au><au>Lamm, Lukas</au><au>Brepols, Tim</au><au>Reese, Stefanie</au><au>Kuhl, Ellen</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Polyconvex inelastic Constitutive Artificial Neural Networks: Source code and data</title><date>2024-04-29</date><risdate>2024</risdate><abstract>This dataset contains the source code of the polyconvex extension of the inelastic Constitutive Artificial Neural Network (iCANN) as well as the data for the examples from the publication: Holthusen, H., Lamm, L., Brepols, T., Reese, S., &amp; E. Kuhl. Polyconvex inelastic Constitutive Artificial Neural Networks.   Results: Discovering a model for the polymer VHB 4910 subjected to cyclic loading Here, we investigate the ability of the polyconvex iCANN to discover and learn a model for the material response of  VHB 4910 polymer subjected to cyclic loading at different stretch rates. The experimental data are taken from the literature: Hossain, M., Vu, D. K., &amp; Steinmann, P. (2012). Experimental study and numerical modelling of VHB 4910 polymer. Computational Materials Science, 59, 65-74. https://doi.org/10.1016/j.commatsci.2012.02.027</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.11084353</doi><orcidid>https://orcid.org/0000-0002-6283-935X</orcidid><orcidid>https://orcid.org/0000-0003-4760-8358</orcidid><orcidid>https://orcid.org/0000-0002-0700-8027</orcidid><orcidid>https://orcid.org/0000-0002-1039-1776</orcidid><orcidid>https://orcid.org/0000-0001-8830-6132</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.11084353
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_11084353
source DataCite
title Polyconvex inelastic Constitutive Artificial Neural Networks: Source code and data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Holthusen,%20Hagen&rft.date=2024-04-29&rft_id=info:doi/10.5281/zenodo.11084353&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_11084353%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true