The critical thermal limits of Lepidoptera
The global teperature has been rising over the past couple hundred years. This rapid change will impact all the species in the world. It is also important to understand how different insects react to these rising temperatures. Insects are ectotherms, meaning that they cannot control their body tempe...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dataset |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Heinonen, Venla Aino Maria |
description | The global teperature has been rising over the past couple hundred years. This rapid change will impact all the species in the world. It is also important to understand how different insects react to these rising temperatures. Insects are ectotherms, meaning that they cannot control their body temperature and therefore their body temperature is determined by the ambient temperature. Therefore the rising global temperature can threaten these species since they are tied to the environmental temperature. This dataset includes 73 different species from Lepidoptera family. The traits that the dataset focuses on are the critical thermal limits (CTLs). CTL points are the points were the individual can no longer be motile on its upper or lower most temperature. By knowing these limits, it will be easier to note the impact of the climate change on these species.
Literature search protocol Google Scholar was used to find relevant papers. The data from the paper was included if it had CTmin and/or CTmax values. If the data was only presented in a figure, the figure was read by an online figure reader (https://apps.automeris.io/wpd/). If multiple values were presented in the paper, the most natural treatment, e.g. if treatment had urban and rural locations, the data for the rural area was chosen, or control values. Ramping rate and acclimation temperatures were also recorded if they were mentioned in the paper.
The used search terms were: - lepidoptera thermal tolerance- lepidoptera critical thermal limits- lepidoptera critical thermal minumum maxima- butterfly critical thermal minumum maxima- butterfly critical thermal limits- papers that had cited C. Nyamukondiwa, J.S. Terblanche (2010)
MetadataLocation accuracy - TRUE (coordinates of the collection site or rearing site given in the paper), ESTIMATE (name of the collection or rearing site given in the paper but no coordinates. Estimate coordinates acquired from Google Maps with the site name)CTMin - The lowest survival temperature in celcius (°C)CTMax - The highest survival temperature in celsius (°C)Ramping rate - how quicly the min/max temperature has been reached from the acclimation temperature. Unit celsius per minute (°C min-1)Acclimation temperature - units in celsius (°C)
Reference listAu, T.F. and Bonebrake, T.C. (2019). Increased Suitability of Poleward Climate for a Tropical Butterfly (Euripus nyctelius) (Lepidoptera: Nymphalidae) Accompanies its Successful Range Expansion. Journal of Insect Science, 19(6 |
doi_str_mv | 10.5281/zenodo.10647794 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_10647794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_10647794</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_106477943</originalsourceid><addsrcrecordid>eNpjYBA3NNAzNbIw1K9KzctPydczNDAzMTe3NOFk0ArJSFVILsosyUxOzFEoyUgtygXSOZm5mSXFCvlpCj6pBZkp-QUlqUWJPAysaYk5xam8UJqbQd_NNcTZQzclsSQxObMkNb6gKDM3sagy3tAgHmRbPMS2eJhtxqTrAACfaTle</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>The critical thermal limits of Lepidoptera</title><source>DataCite</source><creator>Heinonen, Venla Aino Maria</creator><creatorcontrib>Heinonen, Venla Aino Maria</creatorcontrib><description>The global teperature has been rising over the past couple hundred years. This rapid change will impact all the species in the world. It is also important to understand how different insects react to these rising temperatures. Insects are ectotherms, meaning that they cannot control their body temperature and therefore their body temperature is determined by the ambient temperature. Therefore the rising global temperature can threaten these species since they are tied to the environmental temperature. This dataset includes 73 different species from Lepidoptera family. The traits that the dataset focuses on are the critical thermal limits (CTLs). CTL points are the points were the individual can no longer be motile on its upper or lower most temperature. By knowing these limits, it will be easier to note the impact of the climate change on these species.
Literature search protocol Google Scholar was used to find relevant papers. The data from the paper was included if it had CTmin and/or CTmax values. If the data was only presented in a figure, the figure was read by an online figure reader (https://apps.automeris.io/wpd/). If multiple values were presented in the paper, the most natural treatment, e.g. if treatment had urban and rural locations, the data for the rural area was chosen, or control values. Ramping rate and acclimation temperatures were also recorded if they were mentioned in the paper.
The used search terms were: - lepidoptera thermal tolerance- lepidoptera critical thermal limits- lepidoptera critical thermal minumum maxima- butterfly critical thermal minumum maxima- butterfly critical thermal limits- papers that had cited C. Nyamukondiwa, J.S. Terblanche (2010)
MetadataLocation accuracy - TRUE (coordinates of the collection site or rearing site given in the paper), ESTIMATE (name of the collection or rearing site given in the paper but no coordinates. Estimate coordinates acquired from Google Maps with the site name)CTMin - The lowest survival temperature in celcius (°C)CTMax - The highest survival temperature in celsius (°C)Ramping rate - how quicly the min/max temperature has been reached from the acclimation temperature. Unit celsius per minute (°C min-1)Acclimation temperature - units in celsius (°C)
Reference listAu, T.F. and Bonebrake, T.C. (2019). Increased Suitability of Poleward Climate for a Tropical Butterfly (Euripus nyctelius) (Lepidoptera: Nymphalidae) Accompanies its Successful Range Expansion. Journal of Insect Science, 19(6), pp. 2 Available at: https://doi.org/10.1093/jisesa/iez105.
Bawa, S.A., Gregg, P.C., Del Soccoro, A.P., Miller, C. and Andrew, N.R. (2021). Estimating the differences in critical thermal maximum and metabolic rate of Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) across life stages. PeerJ 9:e12479 Available at: https://doi.org/10.7717/peerj.12479.
Chidawanyika, F. and Terblanche, J.S. (2011). Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). Journal of insect physiology, 57(1), pp. 108-117 Available at: https://doi.org/10.1016/j.jinsphys.2010.09.013.
Cowie, B.W., Heystek, F. and Paterson, I.D. (2023). Will climate affect the establishment and efficacy of Agnippe sp. #1 (Lepidoptera: Gelechiidae), a promising biological control agent of Mesquite in South Africa?. Biocontrol, 68(6), pp. 681-695 Available at: https://doi.org/10.1007/s10526-023-10221-6.
Dongmo, M.A.K., Hanna, R., Smith, T.B., Fiaboe, K.K.M., Fomena, A. and Bonebrake, T.C. (2021). Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats. Biology Open, 10(4), pp. bio058619 Available at: https://doi.org/10.1242/bio.058619.
Furlong, M.J. and Zalucki, M.P. (2017). Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Current Opinion in Insect Science, 20, pp. 39-44 Available at: https://doi.org/10.1016/j.cois.2017.03.006.
Keosentse, O., Mutamiswa, R., Du Plessis, H. and Nyamukondiwa, C. (2021). Developmental stage variation in Spodoptera frugiperda (Lepidoptera: Noctuidae) low temperature tolerance: implications for overwintering. Austral Entomology, 60(2), pp. 400-410 Available at: https://doi.org/10.1111/aen.12536.
Kingsolver, J.G., MacLean, H.J., Goddin, S.B. and Augustine, K.E. (2016). Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae. Journal of Experimental Biology, 219(9), pp. 1290-1294 Available at: https://doi.org/10.1242/jeb.138321.
Kleynhans, E., Conlong, D.E. and Terblanche, J.S. (2014). Host plant-related variation in thermal tolerance of Eldana saccharina. Entomologia Experimentalis et Applicata, 150(2), pp. 113-122 Available at: https://doi.org/10.1111/eea.12144.
Klok, C.J. and Chown, S.L. (1997). Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). Journal of insect physiology, 43(7), pp. 685-694 Available at: https://doi.org/10.1016/S0022-1910(97)00001-2.
Klok, C.J. and Chown, S.L. (1998). Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). Journal of insect physiology, 44(7), pp. 615-628 Available at: https://doi.org/10.1016/S0022-1910(98)00052-3.
Klok, C.J. and Chown, S.L. (2002). Assessing the benefits of aggregation: thermal biology and water relations of anomalous Emperor Moth caterpillars. Functional Ecology, 13(3), pp. 417-427 Available at: https://doi.org/10.1046/j.1365-2435.1999.00324.x.
Lenard, A. and Diamond, S.E. (2024). Evidence of Plasticity, But Not Evolutionary Divergence, in the Thermal Limits of a Highly Successful Urban Butterfly. SSRN Available at: http://dx.doi.org/10.2139/ssrn.4698221.
Ling, Y.F. and Bonebrake, T.C. (2022). Consistent heat tolerance under starvation across seasonal morphs in Mycalesis mineus (Lepidoptera: Nymphalidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 271, pp. 111261 Available at: https://doi.org/10.1016/j.cbpa.2022.111261.
Medina-Báez, O.A., Lenard, A., Muzychuk, R.A., da Silva, C.R.B. and Diamond, S.E. (2023). Life cycle complexity and body mass drive erratic changes in climate vulnerability across ontogeny in a seasonally migrating butterfly. Conservation Physiology, 11(1), pp. coad058 Available at: https://doi.org/10.1093/conphys/coad058.
Mpofu, P., Cuthbert, R.N., Machekano, H. and Nyamukondiwa, C. (2022). Transgenerational responses to heat and fasting acclimation in the Angoumois grain moth. Journal of stored products research, 97, pp. 101979 Available at: https://doi.org/10.1016/j.jspr.2022.101979.
Mutamiswa, R., Chidawanyika, F. and Nyamukondiwa, C. (2017). Comparative assessment of the thermal tolerance of spotted stemborer, Chilo partellus (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae (Hymenoptera: Braconidae). Insect Science, 25(5), pp. 847-860 Available at: https://doi.org/10.1111/1744-7917.12466.
Mutamiswa, R., Chidawanyika, F. and Nyamukondiwa, C. (2018). Superior basal and plastic thermal responses to environmental heterogeneity in invasive exotic stemborer Chilo partellus Swinhoe over indigenous Busseola fusca (Fuller) and Sesamia calamistis Hampson. Physiological Entomology, 43(2), pp. 108-119 Available at: https://doi.org/10.1111/phen.12235.
Nqayi, S.B., Zachariades, C., Coetzee, J., Hill, M., Chidawanyika, F., Uyi, O.O. and McConnachie, A.J. (2023). Do thermal requirements of Dichrorampha odorata, a shoot-boring moth for the biological control of Chromolaena odorata, explain its failure to establish in South Africa?. African Entomology, 31, pp. 1-10 Available at: http://dx.doi.org/10.17159/2254-8854/2023/a13597.
Silva, V.D.e., Beirão, M.V. and Cardoso, D.C. (2020). Thermal Tolerance of Fruit-Feeding Butterflies (Lepidoptera: Nymphalidae) in Contrasting Mountaintop Environments. Insects, 11(5) Available at: https://doi.org/10.3390/insects11050278.
Tarusikirwa, V.L., Mutamiswa, R., English, S., Chidawanyika, F. and Nyamukondiwa, C. (2020). Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Journal of thermal biology, 90, pp. 102598 Available at: https://doi.org/10.1016/j.jtherbio.2020.102598.
Terblanche, J.S., Mitchell, K.A., Uys, W., Short, C. and Boardman, L. (2017). Thermal limits to survival and activity in two life stages of false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Physiological Entomology, 42(4), pp. 379-388 Available at: https://doi.org/10.1111/phen.12210.
Tremblay, P., MacMillan, H.A. and Kharouba, H.M. (2021). Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species. Ecology and Evolution, 11(12), pp. 8332-8346 Available at: https://doi.org/10.1002/ece3.7663.</description><identifier>DOI: 10.5281/zenodo.10647794</identifier><language>eng</language><publisher>Zenodo</publisher><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1887</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.10647794$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Heinonen, Venla Aino Maria</creatorcontrib><title>The critical thermal limits of Lepidoptera</title><description>The global teperature has been rising over the past couple hundred years. This rapid change will impact all the species in the world. It is also important to understand how different insects react to these rising temperatures. Insects are ectotherms, meaning that they cannot control their body temperature and therefore their body temperature is determined by the ambient temperature. Therefore the rising global temperature can threaten these species since they are tied to the environmental temperature. This dataset includes 73 different species from Lepidoptera family. The traits that the dataset focuses on are the critical thermal limits (CTLs). CTL points are the points were the individual can no longer be motile on its upper or lower most temperature. By knowing these limits, it will be easier to note the impact of the climate change on these species.
Literature search protocol Google Scholar was used to find relevant papers. The data from the paper was included if it had CTmin and/or CTmax values. If the data was only presented in a figure, the figure was read by an online figure reader (https://apps.automeris.io/wpd/). If multiple values were presented in the paper, the most natural treatment, e.g. if treatment had urban and rural locations, the data for the rural area was chosen, or control values. Ramping rate and acclimation temperatures were also recorded if they were mentioned in the paper.
The used search terms were: - lepidoptera thermal tolerance- lepidoptera critical thermal limits- lepidoptera critical thermal minumum maxima- butterfly critical thermal minumum maxima- butterfly critical thermal limits- papers that had cited C. Nyamukondiwa, J.S. Terblanche (2010)
MetadataLocation accuracy - TRUE (coordinates of the collection site or rearing site given in the paper), ESTIMATE (name of the collection or rearing site given in the paper but no coordinates. Estimate coordinates acquired from Google Maps with the site name)CTMin - The lowest survival temperature in celcius (°C)CTMax - The highest survival temperature in celsius (°C)Ramping rate - how quicly the min/max temperature has been reached from the acclimation temperature. Unit celsius per minute (°C min-1)Acclimation temperature - units in celsius (°C)
Reference listAu, T.F. and Bonebrake, T.C. (2019). Increased Suitability of Poleward Climate for a Tropical Butterfly (Euripus nyctelius) (Lepidoptera: Nymphalidae) Accompanies its Successful Range Expansion. Journal of Insect Science, 19(6), pp. 2 Available at: https://doi.org/10.1093/jisesa/iez105.
Bawa, S.A., Gregg, P.C., Del Soccoro, A.P., Miller, C. and Andrew, N.R. (2021). Estimating the differences in critical thermal maximum and metabolic rate of Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) across life stages. PeerJ 9:e12479 Available at: https://doi.org/10.7717/peerj.12479.
Chidawanyika, F. and Terblanche, J.S. (2011). Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). Journal of insect physiology, 57(1), pp. 108-117 Available at: https://doi.org/10.1016/j.jinsphys.2010.09.013.
Cowie, B.W., Heystek, F. and Paterson, I.D. (2023). Will climate affect the establishment and efficacy of Agnippe sp. #1 (Lepidoptera: Gelechiidae), a promising biological control agent of Mesquite in South Africa?. Biocontrol, 68(6), pp. 681-695 Available at: https://doi.org/10.1007/s10526-023-10221-6.
Dongmo, M.A.K., Hanna, R., Smith, T.B., Fiaboe, K.K.M., Fomena, A. and Bonebrake, T.C. (2021). Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats. Biology Open, 10(4), pp. bio058619 Available at: https://doi.org/10.1242/bio.058619.
Furlong, M.J. and Zalucki, M.P. (2017). Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Current Opinion in Insect Science, 20, pp. 39-44 Available at: https://doi.org/10.1016/j.cois.2017.03.006.
Keosentse, O., Mutamiswa, R., Du Plessis, H. and Nyamukondiwa, C. (2021). Developmental stage variation in Spodoptera frugiperda (Lepidoptera: Noctuidae) low temperature tolerance: implications for overwintering. Austral Entomology, 60(2), pp. 400-410 Available at: https://doi.org/10.1111/aen.12536.
Kingsolver, J.G., MacLean, H.J., Goddin, S.B. and Augustine, K.E. (2016). Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae. Journal of Experimental Biology, 219(9), pp. 1290-1294 Available at: https://doi.org/10.1242/jeb.138321.
Kleynhans, E., Conlong, D.E. and Terblanche, J.S. (2014). Host plant-related variation in thermal tolerance of Eldana saccharina. Entomologia Experimentalis et Applicata, 150(2), pp. 113-122 Available at: https://doi.org/10.1111/eea.12144.
Klok, C.J. and Chown, S.L. (1997). Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). Journal of insect physiology, 43(7), pp. 685-694 Available at: https://doi.org/10.1016/S0022-1910(97)00001-2.
Klok, C.J. and Chown, S.L. (1998). Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). Journal of insect physiology, 44(7), pp. 615-628 Available at: https://doi.org/10.1016/S0022-1910(98)00052-3.
Klok, C.J. and Chown, S.L. (2002). Assessing the benefits of aggregation: thermal biology and water relations of anomalous Emperor Moth caterpillars. Functional Ecology, 13(3), pp. 417-427 Available at: https://doi.org/10.1046/j.1365-2435.1999.00324.x.
Lenard, A. and Diamond, S.E. (2024). Evidence of Plasticity, But Not Evolutionary Divergence, in the Thermal Limits of a Highly Successful Urban Butterfly. SSRN Available at: http://dx.doi.org/10.2139/ssrn.4698221.
Ling, Y.F. and Bonebrake, T.C. (2022). Consistent heat tolerance under starvation across seasonal morphs in Mycalesis mineus (Lepidoptera: Nymphalidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 271, pp. 111261 Available at: https://doi.org/10.1016/j.cbpa.2022.111261.
Medina-Báez, O.A., Lenard, A., Muzychuk, R.A., da Silva, C.R.B. and Diamond, S.E. (2023). Life cycle complexity and body mass drive erratic changes in climate vulnerability across ontogeny in a seasonally migrating butterfly. Conservation Physiology, 11(1), pp. coad058 Available at: https://doi.org/10.1093/conphys/coad058.
Mpofu, P., Cuthbert, R.N., Machekano, H. and Nyamukondiwa, C. (2022). Transgenerational responses to heat and fasting acclimation in the Angoumois grain moth. Journal of stored products research, 97, pp. 101979 Available at: https://doi.org/10.1016/j.jspr.2022.101979.
Mutamiswa, R., Chidawanyika, F. and Nyamukondiwa, C. (2017). Comparative assessment of the thermal tolerance of spotted stemborer, Chilo partellus (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae (Hymenoptera: Braconidae). Insect Science, 25(5), pp. 847-860 Available at: https://doi.org/10.1111/1744-7917.12466.
Mutamiswa, R., Chidawanyika, F. and Nyamukondiwa, C. (2018). Superior basal and plastic thermal responses to environmental heterogeneity in invasive exotic stemborer Chilo partellus Swinhoe over indigenous Busseola fusca (Fuller) and Sesamia calamistis Hampson. Physiological Entomology, 43(2), pp. 108-119 Available at: https://doi.org/10.1111/phen.12235.
Nqayi, S.B., Zachariades, C., Coetzee, J., Hill, M., Chidawanyika, F., Uyi, O.O. and McConnachie, A.J. (2023). Do thermal requirements of Dichrorampha odorata, a shoot-boring moth for the biological control of Chromolaena odorata, explain its failure to establish in South Africa?. African Entomology, 31, pp. 1-10 Available at: http://dx.doi.org/10.17159/2254-8854/2023/a13597.
Silva, V.D.e., Beirão, M.V. and Cardoso, D.C. (2020). Thermal Tolerance of Fruit-Feeding Butterflies (Lepidoptera: Nymphalidae) in Contrasting Mountaintop Environments. Insects, 11(5) Available at: https://doi.org/10.3390/insects11050278.
Tarusikirwa, V.L., Mutamiswa, R., English, S., Chidawanyika, F. and Nyamukondiwa, C. (2020). Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Journal of thermal biology, 90, pp. 102598 Available at: https://doi.org/10.1016/j.jtherbio.2020.102598.
Terblanche, J.S., Mitchell, K.A., Uys, W., Short, C. and Boardman, L. (2017). Thermal limits to survival and activity in two life stages of false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Physiological Entomology, 42(4), pp. 379-388 Available at: https://doi.org/10.1111/phen.12210.
Tremblay, P., MacMillan, H.A. and Kharouba, H.M. (2021). Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species. Ecology and Evolution, 11(12), pp. 8332-8346 Available at: https://doi.org/10.1002/ece3.7663.</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA3NNAzNbIw1K9KzctPydczNDAzMTe3NOFk0ArJSFVILsosyUxOzFEoyUgtygXSOZm5mSXFCvlpCj6pBZkp-QUlqUWJPAysaYk5xam8UJqbQd_NNcTZQzclsSQxObMkNb6gKDM3sagy3tAgHmRbPMS2eJhtxqTrAACfaTle</recordid><startdate>20240211</startdate><enddate>20240211</enddate><creator>Heinonen, Venla Aino Maria</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20240211</creationdate><title>The critical thermal limits of Lepidoptera</title><author>Heinonen, Venla Aino Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_106477943</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Heinonen, Venla Aino Maria</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heinonen, Venla Aino Maria</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>The critical thermal limits of Lepidoptera</title><date>2024-02-11</date><risdate>2024</risdate><abstract>The global teperature has been rising over the past couple hundred years. This rapid change will impact all the species in the world. It is also important to understand how different insects react to these rising temperatures. Insects are ectotherms, meaning that they cannot control their body temperature and therefore their body temperature is determined by the ambient temperature. Therefore the rising global temperature can threaten these species since they are tied to the environmental temperature. This dataset includes 73 different species from Lepidoptera family. The traits that the dataset focuses on are the critical thermal limits (CTLs). CTL points are the points were the individual can no longer be motile on its upper or lower most temperature. By knowing these limits, it will be easier to note the impact of the climate change on these species.
Literature search protocol Google Scholar was used to find relevant papers. The data from the paper was included if it had CTmin and/or CTmax values. If the data was only presented in a figure, the figure was read by an online figure reader (https://apps.automeris.io/wpd/). If multiple values were presented in the paper, the most natural treatment, e.g. if treatment had urban and rural locations, the data for the rural area was chosen, or control values. Ramping rate and acclimation temperatures were also recorded if they were mentioned in the paper.
The used search terms were: - lepidoptera thermal tolerance- lepidoptera critical thermal limits- lepidoptera critical thermal minumum maxima- butterfly critical thermal minumum maxima- butterfly critical thermal limits- papers that had cited C. Nyamukondiwa, J.S. Terblanche (2010)
MetadataLocation accuracy - TRUE (coordinates of the collection site or rearing site given in the paper), ESTIMATE (name of the collection or rearing site given in the paper but no coordinates. Estimate coordinates acquired from Google Maps with the site name)CTMin - The lowest survival temperature in celcius (°C)CTMax - The highest survival temperature in celsius (°C)Ramping rate - how quicly the min/max temperature has been reached from the acclimation temperature. Unit celsius per minute (°C min-1)Acclimation temperature - units in celsius (°C)
Reference listAu, T.F. and Bonebrake, T.C. (2019). Increased Suitability of Poleward Climate for a Tropical Butterfly (Euripus nyctelius) (Lepidoptera: Nymphalidae) Accompanies its Successful Range Expansion. Journal of Insect Science, 19(6), pp. 2 Available at: https://doi.org/10.1093/jisesa/iez105.
Bawa, S.A., Gregg, P.C., Del Soccoro, A.P., Miller, C. and Andrew, N.R. (2021). Estimating the differences in critical thermal maximum and metabolic rate of Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) across life stages. PeerJ 9:e12479 Available at: https://doi.org/10.7717/peerj.12479.
Chidawanyika, F. and Terblanche, J.S. (2011). Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). Journal of insect physiology, 57(1), pp. 108-117 Available at: https://doi.org/10.1016/j.jinsphys.2010.09.013.
Cowie, B.W., Heystek, F. and Paterson, I.D. (2023). Will climate affect the establishment and efficacy of Agnippe sp. #1 (Lepidoptera: Gelechiidae), a promising biological control agent of Mesquite in South Africa?. Biocontrol, 68(6), pp. 681-695 Available at: https://doi.org/10.1007/s10526-023-10221-6.
Dongmo, M.A.K., Hanna, R., Smith, T.B., Fiaboe, K.K.M., Fomena, A. and Bonebrake, T.C. (2021). Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats. Biology Open, 10(4), pp. bio058619 Available at: https://doi.org/10.1242/bio.058619.
Furlong, M.J. and Zalucki, M.P. (2017). Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Current Opinion in Insect Science, 20, pp. 39-44 Available at: https://doi.org/10.1016/j.cois.2017.03.006.
Keosentse, O., Mutamiswa, R., Du Plessis, H. and Nyamukondiwa, C. (2021). Developmental stage variation in Spodoptera frugiperda (Lepidoptera: Noctuidae) low temperature tolerance: implications for overwintering. Austral Entomology, 60(2), pp. 400-410 Available at: https://doi.org/10.1111/aen.12536.
Kingsolver, J.G., MacLean, H.J., Goddin, S.B. and Augustine, K.E. (2016). Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae. Journal of Experimental Biology, 219(9), pp. 1290-1294 Available at: https://doi.org/10.1242/jeb.138321.
Kleynhans, E., Conlong, D.E. and Terblanche, J.S. (2014). Host plant-related variation in thermal tolerance of Eldana saccharina. Entomologia Experimentalis et Applicata, 150(2), pp. 113-122 Available at: https://doi.org/10.1111/eea.12144.
Klok, C.J. and Chown, S.L. (1997). Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). Journal of insect physiology, 43(7), pp. 685-694 Available at: https://doi.org/10.1016/S0022-1910(97)00001-2.
Klok, C.J. and Chown, S.L. (1998). Interactions between desiccation resistance, host-plant contact and the thermal biology of a leaf-dwelling sub-antarctic caterpillar, Embryonopsis halticella (Lepidoptera: Yponomeutidae). Journal of insect physiology, 44(7), pp. 615-628 Available at: https://doi.org/10.1016/S0022-1910(98)00052-3.
Klok, C.J. and Chown, S.L. (2002). Assessing the benefits of aggregation: thermal biology and water relations of anomalous Emperor Moth caterpillars. Functional Ecology, 13(3), pp. 417-427 Available at: https://doi.org/10.1046/j.1365-2435.1999.00324.x.
Lenard, A. and Diamond, S.E. (2024). Evidence of Plasticity, But Not Evolutionary Divergence, in the Thermal Limits of a Highly Successful Urban Butterfly. SSRN Available at: http://dx.doi.org/10.2139/ssrn.4698221.
Ling, Y.F. and Bonebrake, T.C. (2022). Consistent heat tolerance under starvation across seasonal morphs in Mycalesis mineus (Lepidoptera: Nymphalidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 271, pp. 111261 Available at: https://doi.org/10.1016/j.cbpa.2022.111261.
Medina-Báez, O.A., Lenard, A., Muzychuk, R.A., da Silva, C.R.B. and Diamond, S.E. (2023). Life cycle complexity and body mass drive erratic changes in climate vulnerability across ontogeny in a seasonally migrating butterfly. Conservation Physiology, 11(1), pp. coad058 Available at: https://doi.org/10.1093/conphys/coad058.
Mpofu, P., Cuthbert, R.N., Machekano, H. and Nyamukondiwa, C. (2022). Transgenerational responses to heat and fasting acclimation in the Angoumois grain moth. Journal of stored products research, 97, pp. 101979 Available at: https://doi.org/10.1016/j.jspr.2022.101979.
Mutamiswa, R., Chidawanyika, F. and Nyamukondiwa, C. (2017). Comparative assessment of the thermal tolerance of spotted stemborer, Chilo partellus (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae (Hymenoptera: Braconidae). Insect Science, 25(5), pp. 847-860 Available at: https://doi.org/10.1111/1744-7917.12466.
Mutamiswa, R., Chidawanyika, F. and Nyamukondiwa, C. (2018). Superior basal and plastic thermal responses to environmental heterogeneity in invasive exotic stemborer Chilo partellus Swinhoe over indigenous Busseola fusca (Fuller) and Sesamia calamistis Hampson. Physiological Entomology, 43(2), pp. 108-119 Available at: https://doi.org/10.1111/phen.12235.
Nqayi, S.B., Zachariades, C., Coetzee, J., Hill, M., Chidawanyika, F., Uyi, O.O. and McConnachie, A.J. (2023). Do thermal requirements of Dichrorampha odorata, a shoot-boring moth for the biological control of Chromolaena odorata, explain its failure to establish in South Africa?. African Entomology, 31, pp. 1-10 Available at: http://dx.doi.org/10.17159/2254-8854/2023/a13597.
Silva, V.D.e., Beirão, M.V. and Cardoso, D.C. (2020). Thermal Tolerance of Fruit-Feeding Butterflies (Lepidoptera: Nymphalidae) in Contrasting Mountaintop Environments. Insects, 11(5) Available at: https://doi.org/10.3390/insects11050278.
Tarusikirwa, V.L., Mutamiswa, R., English, S., Chidawanyika, F. and Nyamukondiwa, C. (2020). Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Journal of thermal biology, 90, pp. 102598 Available at: https://doi.org/10.1016/j.jtherbio.2020.102598.
Terblanche, J.S., Mitchell, K.A., Uys, W., Short, C. and Boardman, L. (2017). Thermal limits to survival and activity in two life stages of false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Physiological Entomology, 42(4), pp. 379-388 Available at: https://doi.org/10.1111/phen.12210.
Tremblay, P., MacMillan, H.A. and Kharouba, H.M. (2021). Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species. Ecology and Evolution, 11(12), pp. 8332-8346 Available at: https://doi.org/10.1002/ece3.7663.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.10647794</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.5281/zenodo.10647794 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_5281_zenodo_10647794 |
source | DataCite |
title | The critical thermal limits of Lepidoptera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Heinonen,%20Venla%20Aino%20Maria&rft.date=2024-02-11&rft_id=info:doi/10.5281/zenodo.10647794&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_10647794%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |