Dataset: "Auralization of Electric Vehicles for the Perceptual Evaluation of Acoustic Vehicle Alerting Systems"

This repository contains audio examples and measurement data accompanying the paper:  Müller L. & Kropp W. 2024. Auralization of electric vehicles for the perceptual evaluation of acoustic vehicle alerting systems. Acta Acustica, 8, 27. https://doi.org/10.1051/aacus/2024025 The Matlab code for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Müller, Leon, Kropp, Wolfgang
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Müller, Leon
Kropp, Wolfgang
description This repository contains audio examples and measurement data accompanying the paper:  Müller L. & Kropp W. 2024. Auralization of electric vehicles for the perceptual evaluation of acoustic vehicle alerting systems. Acta Acustica, 8, 27. https://doi.org/10.1051/aacus/2024025 The Matlab code for the corresponding auralization model can be found at: https://github.com/leonpaulmueller/evat   Content audio_examples.zip avas - Measured and synthesized AVAS source signals passby - Measured and auralized binaural EV passages at roadside observer position. The generated signals use the same vehicle velocity as the corresponding measurements. tire - Measured and synthesized tire/road noise source signals measurements.zip ambience - binaural ambience measurements avas - AVAS source signal measurements passby - Binaural pass-by measurements, including velocity data and isolated AVAS and tire/road noise signals tires - tire/road noise measurements   For consistency with the paper, we use the following aliases for the three evaluated vehicles: Vehicle A: Tesla Model Y 2021 Vehicle B: Volkswagen ID.3 Pro Performance 2021 Vehicle C: Nissan Leaf 2018
doi_str_mv 10.5281/zenodo.10610490
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_10610490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_10610490</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5281_zenodo_106104903</originalsourceid><addsrcrecordid>eNqVzjsLwjAUQOEsDqLOrpfu2sQX6la04igoriGktzYQm5LcCu2vV_E1O53pwMfYUPDxfLIUcYuly9xY8IXgsxXvMrdVpALSGqKk9sqaVpFxJbgcUouavNFwxsJoiwFy54EKhAN6jRXVykJ6U7b-Lol2daDfAolFT6a8wLEJhNcQ9VknVzbg4N0ei3fpabMfZQ-HNoSy8uaqfCMFl0-yfJHlhzz9_7gDTAxSVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Dataset: "Auralization of Electric Vehicles for the Perceptual Evaluation of Acoustic Vehicle Alerting Systems"</title><source>DataCite</source><creator>Müller, Leon ; Kropp, Wolfgang</creator><creatorcontrib>Müller, Leon ; Kropp, Wolfgang</creatorcontrib><description>This repository contains audio examples and measurement data accompanying the paper:  Müller L. &amp; Kropp W. 2024. Auralization of electric vehicles for the perceptual evaluation of acoustic vehicle alerting systems. Acta Acustica, 8, 27. https://doi.org/10.1051/aacus/2024025 The Matlab code for the corresponding auralization model can be found at: https://github.com/leonpaulmueller/evat   Content audio_examples.zip avas - Measured and synthesized AVAS source signals passby - Measured and auralized binaural EV passages at roadside observer position. The generated signals use the same vehicle velocity as the corresponding measurements. tire - Measured and synthesized tire/road noise source signals measurements.zip ambience - binaural ambience measurements avas - AVAS source signal measurements passby - Binaural pass-by measurements, including velocity data and isolated AVAS and tire/road noise signals tires - tire/road noise measurements   For consistency with the paper, we use the following aliases for the three evaluated vehicles: Vehicle A: Tesla Model Y 2021 Vehicle B: Volkswagen ID.3 Pro Performance 2021 Vehicle C: Nissan Leaf 2018</description><identifier>DOI: 10.5281/zenodo.10610490</identifier><language>eng</language><publisher>Zenodo</publisher><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3662-9631 ; 0000-0001-5747-8943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5281/zenodo.10610490$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Müller, Leon</creatorcontrib><creatorcontrib>Kropp, Wolfgang</creatorcontrib><title>Dataset: "Auralization of Electric Vehicles for the Perceptual Evaluation of Acoustic Vehicle Alerting Systems"</title><description>This repository contains audio examples and measurement data accompanying the paper:  Müller L. &amp; Kropp W. 2024. Auralization of electric vehicles for the perceptual evaluation of acoustic vehicle alerting systems. Acta Acustica, 8, 27. https://doi.org/10.1051/aacus/2024025 The Matlab code for the corresponding auralization model can be found at: https://github.com/leonpaulmueller/evat   Content audio_examples.zip avas - Measured and synthesized AVAS source signals passby - Measured and auralized binaural EV passages at roadside observer position. The generated signals use the same vehicle velocity as the corresponding measurements. tire - Measured and synthesized tire/road noise source signals measurements.zip ambience - binaural ambience measurements avas - AVAS source signal measurements passby - Binaural pass-by measurements, including velocity data and isolated AVAS and tire/road noise signals tires - tire/road noise measurements   For consistency with the paper, we use the following aliases for the three evaluated vehicles: Vehicle A: Tesla Model Y 2021 Vehicle B: Volkswagen ID.3 Pro Performance 2021 Vehicle C: Nissan Leaf 2018</description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVzjsLwjAUQOEsDqLOrpfu2sQX6la04igoriGktzYQm5LcCu2vV_E1O53pwMfYUPDxfLIUcYuly9xY8IXgsxXvMrdVpALSGqKk9sqaVpFxJbgcUouavNFwxsJoiwFy54EKhAN6jRXVykJ6U7b-Lol2daDfAolFT6a8wLEJhNcQ9VknVzbg4N0ei3fpabMfZQ-HNoSy8uaqfCMFl0-yfJHlhzz9_7gDTAxSVA</recordid><startdate>20240202</startdate><enddate>20240202</enddate><creator>Müller, Leon</creator><creator>Kropp, Wolfgang</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-3662-9631</orcidid><orcidid>https://orcid.org/0000-0001-5747-8943</orcidid></search><sort><creationdate>20240202</creationdate><title>Dataset: "Auralization of Electric Vehicles for the Perceptual Evaluation of Acoustic Vehicle Alerting Systems"</title><author>Müller, Leon ; Kropp, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5281_zenodo_106104903</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Müller, Leon</creatorcontrib><creatorcontrib>Kropp, Wolfgang</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Müller, Leon</au><au>Kropp, Wolfgang</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Dataset: "Auralization of Electric Vehicles for the Perceptual Evaluation of Acoustic Vehicle Alerting Systems"</title><date>2024-02-02</date><risdate>2024</risdate><abstract>This repository contains audio examples and measurement data accompanying the paper:  Müller L. &amp; Kropp W. 2024. Auralization of electric vehicles for the perceptual evaluation of acoustic vehicle alerting systems. Acta Acustica, 8, 27. https://doi.org/10.1051/aacus/2024025 The Matlab code for the corresponding auralization model can be found at: https://github.com/leonpaulmueller/evat   Content audio_examples.zip avas - Measured and synthesized AVAS source signals passby - Measured and auralized binaural EV passages at roadside observer position. The generated signals use the same vehicle velocity as the corresponding measurements. tire - Measured and synthesized tire/road noise source signals measurements.zip ambience - binaural ambience measurements avas - AVAS source signal measurements passby - Binaural pass-by measurements, including velocity data and isolated AVAS and tire/road noise signals tires - tire/road noise measurements   For consistency with the paper, we use the following aliases for the three evaluated vehicles: Vehicle A: Tesla Model Y 2021 Vehicle B: Volkswagen ID.3 Pro Performance 2021 Vehicle C: Nissan Leaf 2018</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.10610490</doi><orcidid>https://orcid.org/0000-0002-3662-9631</orcidid><orcidid>https://orcid.org/0000-0001-5747-8943</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5281/zenodo.10610490
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5281_zenodo_10610490
source DataCite
title Dataset: "Auralization of Electric Vehicles for the Perceptual Evaluation of Acoustic Vehicle Alerting Systems"
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=M%C3%BCller,%20Leon&rft.date=2024-02-02&rft_id=info:doi/10.5281/zenodo.10610490&rft_dat=%3Cdatacite_PQ8%3E10_5281_zenodo_10610490%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true