Data underpinning "Transmon platform for quantum computing challenged by chaotic fluctuations"

Data set underlying the figures in the article "Transmon platform for quantum computing challenged by chaotic fluctuations" (https://doi.org/10.1038/s41467-022-29940-y) From the perspective of many-body physics, the transmon qubit architectures currently developed for quantum computing are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Berke, Christoph, Varvelis, Evangelos, Trebst, Simon, Altland, Alexander, DiVincenzo, David
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data set underlying the figures in the article "Transmon platform for quantum computing challenged by chaotic fluctuations" (https://doi.org/10.1038/s41467-022-29940-y) From the perspective of many-body physics, the transmon qubit architectures currently developed for quantum computing are systems of coupled nonlinear quantum resonators. A certain amount of intentional frequency detuning ('disorder') is crucially required to protect individual qubit states against the destabilizing effects of nonlinear resonator coupling. In our paper, we investigate the stability of this variant of a many-body localized phase for system parameters relevant to current quantum processors developed by the IBM, Delft, and Google consortia, considering the cases of natural or engineered disorder. Applying three independent diagnostics of localization theory — a Kullback–Leibler analysis of spectral statistics, statistics of many-body wave functions (inverse participation ratios), and a Walsh transform of the many-body spectrum — we find that some of these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
DOI:10.5281/zenodo.10122596