Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering

Molecular epidemiology using genomic data can help identify relationships between malaria parasite population structure, malaria transmission intensity, and ultimately help generate actionable data to assess the effectiveness of malaria control strategies. Genomic data, coupled with geographic infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sy, Mouhamad, Deme, Awa, Warren, Joshua, Daniels, Rachel, Dieye, Baba, Ndiaye, Pape Ibrahima, Diedhiou, Younous, Mbaye, Amadou Moctar, Volkman, Sarah, Hartl, Daniel, Wirth, Dyann, Ndiaye, Daouda, Bei, Amy
Format: Dataset
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sy, Mouhamad
Deme, Awa
Warren, Joshua
Daniels, Rachel
Dieye, Baba
Ndiaye, Pape Ibrahima
Diedhiou, Younous
Mbaye, Amadou Moctar
Volkman, Sarah
Hartl, Daniel
Wirth, Dyann
Ndiaye, Daouda
Bei, Amy
description Molecular epidemiology using genomic data can help identify relationships between malaria parasite population structure, malaria transmission intensity, and ultimately help generate actionable data to assess the effectiveness of malaria control strategies. Genomic data, coupled with geographic information systems data, can further identify clusters or hotspots of malaria transmission, parasite genetic and spatial connectivity, and parasite movement by human or mosquito mobility over time and space.  In this study, we performed longitudinal genomic surveillance in a cohort of 70 participants over four years from different neighborhoods and households in Thiès, Senegal—a region of exceptionally low malaria transmission (entomological inoculation rate (EIR) less than 1). Genetic identity (identity by state) was established using a 24 single nucleotide polymorphism molecular barcode and a multivariable linear regression model was used to establish genetic and spatial relationships. Our results show clustering of genetically similar parasites within households and a decline in genetic similarity of parasites with increasing distance.  One household showed extremely high diversity and warrants further investigation as to the source of these diverse genetic types. This study illustrates the utility of genomic data with traditional epidemiological approaches for surveillance and detection of trends and patterns in malaria transmission not only by neighborhood but also by household. This approach can be implemented regionally and countrywide to strengthen and support malaria control and elimination efforts.     
doi_str_mv 10.5061/dryad.wh70rxwmk
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_wh70rxwmk</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_wh70rxwmk</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_wh70rxwmk3</originalsourceid><addsrcrecordid>eNqVjztuAkEMhqehiELqtD4AgV1FJAeIEqVMQT-yZgxrMS_Zs5C9SM6bWYToqfzQ50_-jXnuu_W2e-s3Xib06_Pw3snvOR4fzN9PQI3Z8xhhj8FxQWntgVKO7EBHORGHgMkRCJ0Ig4IWrIwBMHmoFEuWNlSh5HUFqJodNyAnyPtZRLWJZrYMk7JrrGets3F1WQ95VBpy8ODCqJWE02FpFu0bpadrfTSbr8_dx_eLx4qOK9kiHFEm23d2TmYvyewt2ev9F__Ad2cW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering</title><source>DataCite</source><creator>Sy, Mouhamad ; Deme, Awa ; Warren, Joshua ; Daniels, Rachel ; Dieye, Baba ; Ndiaye, Pape Ibrahima ; Diedhiou, Younous ; Mbaye, Amadou Moctar ; Volkman, Sarah ; Hartl, Daniel ; Wirth, Dyann ; Ndiaye, Daouda ; Bei, Amy</creator><creatorcontrib>Sy, Mouhamad ; Deme, Awa ; Warren, Joshua ; Daniels, Rachel ; Dieye, Baba ; Ndiaye, Pape Ibrahima ; Diedhiou, Younous ; Mbaye, Amadou Moctar ; Volkman, Sarah ; Hartl, Daniel ; Wirth, Dyann ; Ndiaye, Daouda ; Bei, Amy</creatorcontrib><description>Molecular epidemiology using genomic data can help identify relationships between malaria parasite population structure, malaria transmission intensity, and ultimately help generate actionable data to assess the effectiveness of malaria control strategies. Genomic data, coupled with geographic information systems data, can further identify clusters or hotspots of malaria transmission, parasite genetic and spatial connectivity, and parasite movement by human or mosquito mobility over time and space.  In this study, we performed longitudinal genomic surveillance in a cohort of 70 participants over four years from different neighborhoods and households in Thiès, Senegal—a region of exceptionally low malaria transmission (entomological inoculation rate (EIR) less than 1). Genetic identity (identity by state) was established using a 24 single nucleotide polymorphism molecular barcode and a multivariable linear regression model was used to establish genetic and spatial relationships. Our results show clustering of genetically similar parasites within households and a decline in genetic similarity of parasites with increasing distance.  One household showed extremely high diversity and warrants further investigation as to the source of these diverse genetic types. This study illustrates the utility of genomic data with traditional epidemiological approaches for surveillance and detection of trends and patterns in malaria transmission not only by neighborhood but also by household. This approach can be implemented regionally and countrywide to strengthen and support malaria control and elimination efforts.     </description><identifier>DOI: 10.5061/dryad.wh70rxwmk</identifier><language>eng</language><publisher>Dryad</publisher><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1159-760X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.wh70rxwmk$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sy, Mouhamad</creatorcontrib><creatorcontrib>Deme, Awa</creatorcontrib><creatorcontrib>Warren, Joshua</creatorcontrib><creatorcontrib>Daniels, Rachel</creatorcontrib><creatorcontrib>Dieye, Baba</creatorcontrib><creatorcontrib>Ndiaye, Pape Ibrahima</creatorcontrib><creatorcontrib>Diedhiou, Younous</creatorcontrib><creatorcontrib>Mbaye, Amadou Moctar</creatorcontrib><creatorcontrib>Volkman, Sarah</creatorcontrib><creatorcontrib>Hartl, Daniel</creatorcontrib><creatorcontrib>Wirth, Dyann</creatorcontrib><creatorcontrib>Ndiaye, Daouda</creatorcontrib><creatorcontrib>Bei, Amy</creatorcontrib><title>Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering</title><description>Molecular epidemiology using genomic data can help identify relationships between malaria parasite population structure, malaria transmission intensity, and ultimately help generate actionable data to assess the effectiveness of malaria control strategies. Genomic data, coupled with geographic information systems data, can further identify clusters or hotspots of malaria transmission, parasite genetic and spatial connectivity, and parasite movement by human or mosquito mobility over time and space.  In this study, we performed longitudinal genomic surveillance in a cohort of 70 participants over four years from different neighborhoods and households in Thiès, Senegal—a region of exceptionally low malaria transmission (entomological inoculation rate (EIR) less than 1). Genetic identity (identity by state) was established using a 24 single nucleotide polymorphism molecular barcode and a multivariable linear regression model was used to establish genetic and spatial relationships. Our results show clustering of genetically similar parasites within households and a decline in genetic similarity of parasites with increasing distance.  One household showed extremely high diversity and warrants further investigation as to the source of these diverse genetic types. This study illustrates the utility of genomic data with traditional epidemiological approaches for surveillance and detection of trends and patterns in malaria transmission not only by neighborhood but also by household. This approach can be implemented regionally and countrywide to strengthen and support malaria control and elimination efforts.     </description><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjztuAkEMhqehiELqtD4AgV1FJAeIEqVMQT-yZgxrMS_Zs5C9SM6bWYToqfzQ50_-jXnuu_W2e-s3Xib06_Pw3snvOR4fzN9PQI3Z8xhhj8FxQWntgVKO7EBHORGHgMkRCJ0Ig4IWrIwBMHmoFEuWNlSh5HUFqJodNyAnyPtZRLWJZrYMk7JrrGets3F1WQ95VBpy8ODCqJWE02FpFu0bpadrfTSbr8_dx_eLx4qOK9kiHFEm23d2TmYvyewt2ev9F__Ad2cW</recordid><startdate>20201229</startdate><enddate>20201229</enddate><creator>Sy, Mouhamad</creator><creator>Deme, Awa</creator><creator>Warren, Joshua</creator><creator>Daniels, Rachel</creator><creator>Dieye, Baba</creator><creator>Ndiaye, Pape Ibrahima</creator><creator>Diedhiou, Younous</creator><creator>Mbaye, Amadou Moctar</creator><creator>Volkman, Sarah</creator><creator>Hartl, Daniel</creator><creator>Wirth, Dyann</creator><creator>Ndiaye, Daouda</creator><creator>Bei, Amy</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-1159-760X</orcidid></search><sort><creationdate>20201229</creationdate><title>Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering</title><author>Sy, Mouhamad ; Deme, Awa ; Warren, Joshua ; Daniels, Rachel ; Dieye, Baba ; Ndiaye, Pape Ibrahima ; Diedhiou, Younous ; Mbaye, Amadou Moctar ; Volkman, Sarah ; Hartl, Daniel ; Wirth, Dyann ; Ndiaye, Daouda ; Bei, Amy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_wh70rxwmk3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sy, Mouhamad</creatorcontrib><creatorcontrib>Deme, Awa</creatorcontrib><creatorcontrib>Warren, Joshua</creatorcontrib><creatorcontrib>Daniels, Rachel</creatorcontrib><creatorcontrib>Dieye, Baba</creatorcontrib><creatorcontrib>Ndiaye, Pape Ibrahima</creatorcontrib><creatorcontrib>Diedhiou, Younous</creatorcontrib><creatorcontrib>Mbaye, Amadou Moctar</creatorcontrib><creatorcontrib>Volkman, Sarah</creatorcontrib><creatorcontrib>Hartl, Daniel</creatorcontrib><creatorcontrib>Wirth, Dyann</creatorcontrib><creatorcontrib>Ndiaye, Daouda</creatorcontrib><creatorcontrib>Bei, Amy</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sy, Mouhamad</au><au>Deme, Awa</au><au>Warren, Joshua</au><au>Daniels, Rachel</au><au>Dieye, Baba</au><au>Ndiaye, Pape Ibrahima</au><au>Diedhiou, Younous</au><au>Mbaye, Amadou Moctar</au><au>Volkman, Sarah</au><au>Hartl, Daniel</au><au>Wirth, Dyann</au><au>Ndiaye, Daouda</au><au>Bei, Amy</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering</title><date>2020-12-29</date><risdate>2020</risdate><abstract>Molecular epidemiology using genomic data can help identify relationships between malaria parasite population structure, malaria transmission intensity, and ultimately help generate actionable data to assess the effectiveness of malaria control strategies. Genomic data, coupled with geographic information systems data, can further identify clusters or hotspots of malaria transmission, parasite genetic and spatial connectivity, and parasite movement by human or mosquito mobility over time and space.  In this study, we performed longitudinal genomic surveillance in a cohort of 70 participants over four years from different neighborhoods and households in Thiès, Senegal—a region of exceptionally low malaria transmission (entomological inoculation rate (EIR) less than 1). Genetic identity (identity by state) was established using a 24 single nucleotide polymorphism molecular barcode and a multivariable linear regression model was used to establish genetic and spatial relationships. Our results show clustering of genetically similar parasites within households and a decline in genetic similarity of parasites with increasing distance.  One household showed extremely high diversity and warrants further investigation as to the source of these diverse genetic types. This study illustrates the utility of genomic data with traditional epidemiological approaches for surveillance and detection of trends and patterns in malaria transmission not only by neighborhood but also by household. This approach can be implemented regionally and countrywide to strengthen and support malaria control and elimination efforts.     </abstract><pub>Dryad</pub><doi>10.5061/dryad.wh70rxwmk</doi><orcidid>https://orcid.org/0000-0003-1159-760X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5061/dryad.wh70rxwmk
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5061_dryad_wh70rxwmk
source DataCite
title Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Sy,%20Mouhamad&rft.date=2020-12-29&rft_id=info:doi/10.5061/dryad.wh70rxwmk&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_wh70rxwmk%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true