Data for: PIEZO1-HaloTag hiPSCs: bridging molecular, cellular and tissue imaging

PIEZO1 channels play a critical role in numerous physiological processes by transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of endogenous PIEZO1 activity and localization in regulating mechanotransduction. To enable physiologicall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bertaccini, Gabriella, Evans, Elizabeth, Nourse, Jamison, Dickinson, George, Liu, Gaoxiang, Casanellas, Ignasi, Seal, Sayan, Ly, Alan, Holt, Jesse, Yan, Shijun, Hui, Elliot, Panicker, Mitradas, Upadhyayula, Srigokul, Parker, Ian, Pathak, Medha
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bertaccini, Gabriella
Evans, Elizabeth
Nourse, Jamison
Dickinson, George
Liu, Gaoxiang
Casanellas, Ignasi
Seal, Sayan
Ly, Alan
Holt, Jesse
Yan, Shijun
Hui, Elliot
Panicker, Mitradas
Upadhyayula, Srigokul
Parker, Ian
Pathak, Medha
description PIEZO1 channels play a critical role in numerous physiological processes by transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of endogenous PIEZO1 activity and localization in regulating mechanotransduction. To enable physiologically and clinically relevant human-based studies, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with super-resolution imaging, our chemogenetic approach allows precise visualization of PIEZO1 in various cell types. Further, the PIEZO1-HaloTag hiPSC technology allows non-invasive monitoring of channel activity via Ca2+-sensitive HaloTag ligands, with temporal resolution approaching that of patch clamp electrophysiology. Using lightsheet imaging of hiPSC-derived neural organoids, we also achieve molecular scale PIEZO1 imaging in three-dimensional tissue samples. Our advances offer a novel platform for studying PIEZO1 mechanotransduction in human cells and tissues, with potential for elucidating disease mechanisms and development of targeted therapeutics.
doi_str_mv 10.5061/dryad.w6m905qwm
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_w6m905qwm</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_w6m905qwm</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_w6m905qwm3</originalsourceid><addsrcrecordid>eNpjYBA3NNAzNTAz1E8pqkxM0Ss3y7U0MC0sz-VkCHBJLElUSMsvslII8HSN8jfU9UjMyQ9JTFfIyAwIdi62UkgqykxJz8xLV8jNz0lNLs1JLNJRSE7NyQGxFBLzUhRKMouLS1MVMnMTQcp4GFjTEnOKU3mhNDeDvptriLOHbgrQouTMktT4giKg0qLKeEODeJCb4sFuioe7yZh0HQApWEid</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Data for: PIEZO1-HaloTag hiPSCs: bridging molecular, cellular and tissue imaging</title><source>DataCite</source><creator>Bertaccini, Gabriella ; Evans, Elizabeth ; Nourse, Jamison ; Dickinson, George ; Liu, Gaoxiang ; Casanellas, Ignasi ; Seal, Sayan ; Ly, Alan ; Holt, Jesse ; Yan, Shijun ; Hui, Elliot ; Panicker, Mitradas ; Upadhyayula, Srigokul ; Parker, Ian ; Pathak, Medha</creator><creatorcontrib>Bertaccini, Gabriella ; Evans, Elizabeth ; Nourse, Jamison ; Dickinson, George ; Liu, Gaoxiang ; Casanellas, Ignasi ; Seal, Sayan ; Ly, Alan ; Holt, Jesse ; Yan, Shijun ; Hui, Elliot ; Panicker, Mitradas ; Upadhyayula, Srigokul ; Parker, Ian ; Pathak, Medha</creatorcontrib><description>PIEZO1 channels play a critical role in numerous physiological processes by transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of endogenous PIEZO1 activity and localization in regulating mechanotransduction. To enable physiologically and clinically relevant human-based studies, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with super-resolution imaging, our chemogenetic approach allows precise visualization of PIEZO1 in various cell types. Further, the PIEZO1-HaloTag hiPSC technology allows non-invasive monitoring of channel activity via Ca2+-sensitive HaloTag ligands, with temporal resolution approaching that of patch clamp electrophysiology. Using lightsheet imaging of hiPSC-derived neural organoids, we also achieve molecular scale PIEZO1 imaging in three-dimensional tissue samples. Our advances offer a novel platform for studying PIEZO1 mechanotransduction in human cells and tissues, with potential for elucidating disease mechanisms and development of targeted therapeutics.</description><identifier>DOI: 10.5061/dryad.w6m905qwm</identifier><language>eng</language><publisher>Dryad</publisher><subject>Biological sciences ; Biophysics ; Cell biology ; Cellular imaging ; FOS: Biological sciences ; Membrane biophysics</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-8897-173X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.w6m905qwm$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bertaccini, Gabriella</creatorcontrib><creatorcontrib>Evans, Elizabeth</creatorcontrib><creatorcontrib>Nourse, Jamison</creatorcontrib><creatorcontrib>Dickinson, George</creatorcontrib><creatorcontrib>Liu, Gaoxiang</creatorcontrib><creatorcontrib>Casanellas, Ignasi</creatorcontrib><creatorcontrib>Seal, Sayan</creatorcontrib><creatorcontrib>Ly, Alan</creatorcontrib><creatorcontrib>Holt, Jesse</creatorcontrib><creatorcontrib>Yan, Shijun</creatorcontrib><creatorcontrib>Hui, Elliot</creatorcontrib><creatorcontrib>Panicker, Mitradas</creatorcontrib><creatorcontrib>Upadhyayula, Srigokul</creatorcontrib><creatorcontrib>Parker, Ian</creatorcontrib><creatorcontrib>Pathak, Medha</creatorcontrib><title>Data for: PIEZO1-HaloTag hiPSCs: bridging molecular, cellular and tissue imaging</title><description>PIEZO1 channels play a critical role in numerous physiological processes by transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of endogenous PIEZO1 activity and localization in regulating mechanotransduction. To enable physiologically and clinically relevant human-based studies, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with super-resolution imaging, our chemogenetic approach allows precise visualization of PIEZO1 in various cell types. Further, the PIEZO1-HaloTag hiPSC technology allows non-invasive monitoring of channel activity via Ca2+-sensitive HaloTag ligands, with temporal resolution approaching that of patch clamp electrophysiology. Using lightsheet imaging of hiPSC-derived neural organoids, we also achieve molecular scale PIEZO1 imaging in three-dimensional tissue samples. Our advances offer a novel platform for studying PIEZO1 mechanotransduction in human cells and tissues, with potential for elucidating disease mechanisms and development of targeted therapeutics.</description><subject>Biological sciences</subject><subject>Biophysics</subject><subject>Cell biology</subject><subject>Cellular imaging</subject><subject>FOS: Biological sciences</subject><subject>Membrane biophysics</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA3NNAzNTAz1E8pqkxM0Ss3y7U0MC0sz-VkCHBJLElUSMsvslII8HSN8jfU9UjMyQ9JTFfIyAwIdi62UkgqykxJz8xLV8jNz0lNLs1JLNJRSE7NyQGxFBLzUhRKMouLS1MVMnMTQcp4GFjTEnOKU3mhNDeDvptriLOHbgrQouTMktT4giKg0qLKeEODeJCb4sFuioe7yZh0HQApWEid</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Bertaccini, Gabriella</creator><creator>Evans, Elizabeth</creator><creator>Nourse, Jamison</creator><creator>Dickinson, George</creator><creator>Liu, Gaoxiang</creator><creator>Casanellas, Ignasi</creator><creator>Seal, Sayan</creator><creator>Ly, Alan</creator><creator>Holt, Jesse</creator><creator>Yan, Shijun</creator><creator>Hui, Elliot</creator><creator>Panicker, Mitradas</creator><creator>Upadhyayula, Srigokul</creator><creator>Parker, Ian</creator><creator>Pathak, Medha</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0009-0004-8897-173X</orcidid></search><sort><creationdate>20240307</creationdate><title>Data for: PIEZO1-HaloTag hiPSCs: bridging molecular, cellular and tissue imaging</title><author>Bertaccini, Gabriella ; Evans, Elizabeth ; Nourse, Jamison ; Dickinson, George ; Liu, Gaoxiang ; Casanellas, Ignasi ; Seal, Sayan ; Ly, Alan ; Holt, Jesse ; Yan, Shijun ; Hui, Elliot ; Panicker, Mitradas ; Upadhyayula, Srigokul ; Parker, Ian ; Pathak, Medha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_w6m905qwm3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological sciences</topic><topic>Biophysics</topic><topic>Cell biology</topic><topic>Cellular imaging</topic><topic>FOS: Biological sciences</topic><topic>Membrane biophysics</topic><toplevel>online_resources</toplevel><creatorcontrib>Bertaccini, Gabriella</creatorcontrib><creatorcontrib>Evans, Elizabeth</creatorcontrib><creatorcontrib>Nourse, Jamison</creatorcontrib><creatorcontrib>Dickinson, George</creatorcontrib><creatorcontrib>Liu, Gaoxiang</creatorcontrib><creatorcontrib>Casanellas, Ignasi</creatorcontrib><creatorcontrib>Seal, Sayan</creatorcontrib><creatorcontrib>Ly, Alan</creatorcontrib><creatorcontrib>Holt, Jesse</creatorcontrib><creatorcontrib>Yan, Shijun</creatorcontrib><creatorcontrib>Hui, Elliot</creatorcontrib><creatorcontrib>Panicker, Mitradas</creatorcontrib><creatorcontrib>Upadhyayula, Srigokul</creatorcontrib><creatorcontrib>Parker, Ian</creatorcontrib><creatorcontrib>Pathak, Medha</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bertaccini, Gabriella</au><au>Evans, Elizabeth</au><au>Nourse, Jamison</au><au>Dickinson, George</au><au>Liu, Gaoxiang</au><au>Casanellas, Ignasi</au><au>Seal, Sayan</au><au>Ly, Alan</au><au>Holt, Jesse</au><au>Yan, Shijun</au><au>Hui, Elliot</au><au>Panicker, Mitradas</au><au>Upadhyayula, Srigokul</au><au>Parker, Ian</au><au>Pathak, Medha</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Data for: PIEZO1-HaloTag hiPSCs: bridging molecular, cellular and tissue imaging</title><date>2024-03-07</date><risdate>2024</risdate><abstract>PIEZO1 channels play a critical role in numerous physiological processes by transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of endogenous PIEZO1 activity and localization in regulating mechanotransduction. To enable physiologically and clinically relevant human-based studies, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with super-resolution imaging, our chemogenetic approach allows precise visualization of PIEZO1 in various cell types. Further, the PIEZO1-HaloTag hiPSC technology allows non-invasive monitoring of channel activity via Ca2+-sensitive HaloTag ligands, with temporal resolution approaching that of patch clamp electrophysiology. Using lightsheet imaging of hiPSC-derived neural organoids, we also achieve molecular scale PIEZO1 imaging in three-dimensional tissue samples. Our advances offer a novel platform for studying PIEZO1 mechanotransduction in human cells and tissues, with potential for elucidating disease mechanisms and development of targeted therapeutics.</abstract><pub>Dryad</pub><doi>10.5061/dryad.w6m905qwm</doi><orcidid>https://orcid.org/0009-0004-8897-173X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5061/dryad.w6m905qwm
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5061_dryad_w6m905qwm
source DataCite
subjects Biological sciences
Biophysics
Cell biology
Cellular imaging
FOS: Biological sciences
Membrane biophysics
title Data for: PIEZO1-HaloTag hiPSCs: bridging molecular, cellular and tissue imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Bertaccini,%20Gabriella&rft.date=2024-03-07&rft_id=info:doi/10.5061/dryad.w6m905qwm&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_w6m905qwm%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true