Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models

Predictive performance is important to many applications of species distribution models (SDMs). The SDM ‘ensemble’ approach, which combines predictions across different modelling methods, is believed to improve predictive performance, and is used in many recent SDM studies. Here, we aim to compare t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hao, Tianxiao, Elith, Jane, Lahoz‐Monfort, José J., Guillera‐Arroita, Gurutzeta
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hao, Tianxiao
Elith, Jane
Lahoz‐Monfort, José J.
Guillera‐Arroita, Gurutzeta
description Predictive performance is important to many applications of species distribution models (SDMs). The SDM ‘ensemble’ approach, which combines predictions across different modelling methods, is believed to improve predictive performance, and is used in many recent SDM studies. Here, we aim to compare the predictive performance of ensemble species distribution models to that of individual models, using a large presence-absence dataset of eucalypt tree species. To test model performance, we divided our dataset into calibration and evaluation folds using two spatial blocking strategies (checkerboard-pattern and latitudinal slicing). We calibrated and cross-validated all models within the calibration folds, using both repeated random division of data (a common approach) and spatial blocking. Ensembles were built using the software package ‘biomod2’, with standard (“untuned”) settings. Boosted regression tree (BRT) models were also fitted to the same data, tuned according to published procedures. We then used evaluation folds to compare ensembles against both their component untuned individual models, and against the BRTs. We used area under the receiver-operating characteristic curve (AUC) and log-likelihood for assessing model performance. In all our tests, ensemble models performed well, but not consistently better than their component untuned individual models or tuned BRTs across all tests. Moreover, choosing untuned individual models with best cross-validation performance also yielded good external performance, with blocked cross-validation proving better suited for this choice, in this study, than repeated random cross-validation. The latitudinal slice test was only possible for four species; this showed some individual models, and particularly the tuned one, performing better than ensembles. This study shows no particular benefit to using ensembles over individual tuned models. It also suggests that further robust testing of performance is required for situations where models are used to predict to distant places or environments.
doi_str_mv 10.5061/dryad.tqjq2bvv2
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_tqjq2bvv2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_tqjq2bvv2</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_tqjq2bvv23</originalsourceid><addsrcrecordid>eNqVjkESwUAQRWdjobC27QsgobiAohzAfqqT6dAqM5NMt-D2BGVv9Rev_qtnzDTP5utsky9ceqCba3tpl0XXLYfmdiRRDie4nUnPlICCkC9qAh8d1XWPWABdh0HxRPEqUMUEHu_sWXrcJHJcKncEDaUX9BhKgliBNFQyCTgWTVxclWP4eGVsBhXWQpPvjsxivztuDzOHiiUr2Saxx_SweWb7dPtOt7_01f-PJ2TTW7U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models</title><source>DataCite</source><creator>Hao, Tianxiao ; Elith, Jane ; Lahoz‐Monfort, José J. ; Guillera‐Arroita, Gurutzeta</creator><creatorcontrib>Hao, Tianxiao ; Elith, Jane ; Lahoz‐Monfort, José J. ; Guillera‐Arroita, Gurutzeta</creatorcontrib><description>Predictive performance is important to many applications of species distribution models (SDMs). The SDM ‘ensemble’ approach, which combines predictions across different modelling methods, is believed to improve predictive performance, and is used in many recent SDM studies. Here, we aim to compare the predictive performance of ensemble species distribution models to that of individual models, using a large presence-absence dataset of eucalypt tree species. To test model performance, we divided our dataset into calibration and evaluation folds using two spatial blocking strategies (checkerboard-pattern and latitudinal slicing). We calibrated and cross-validated all models within the calibration folds, using both repeated random division of data (a common approach) and spatial blocking. Ensembles were built using the software package ‘biomod2’, with standard (“untuned”) settings. Boosted regression tree (BRT) models were also fitted to the same data, tuned according to published procedures. We then used evaluation folds to compare ensembles against both their component untuned individual models, and against the BRTs. We used area under the receiver-operating characteristic curve (AUC) and log-likelihood for assessing model performance. In all our tests, ensemble models performed well, but not consistently better than their component untuned individual models or tuned BRTs across all tests. Moreover, choosing untuned individual models with best cross-validation performance also yielded good external performance, with blocked cross-validation proving better suited for this choice, in this study, than repeated random cross-validation. The latitudinal slice test was only possible for four species; this showed some individual models, and particularly the tuned one, performing better than ensembles. This study shows no particular benefit to using ensembles over individual tuned models. It also suggests that further robust testing of performance is required for situations where models are used to predict to distant places or environments.</description><identifier>DOI: 10.5061/dryad.tqjq2bvv2</identifier><language>eng</language><publisher>Dryad</publisher><subject>BIOMOD ; consensus forecast ; model performance ; model tuning ; spatial blocking</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8387-5739 ; 0000-0002-8706-0326 ; 0000-0002-0845-7035 ; 0000-0003-4363-1956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.tqjq2bvv2$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hao, Tianxiao</creatorcontrib><creatorcontrib>Elith, Jane</creatorcontrib><creatorcontrib>Lahoz‐Monfort, José J.</creatorcontrib><creatorcontrib>Guillera‐Arroita, Gurutzeta</creatorcontrib><title>Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models</title><description>Predictive performance is important to many applications of species distribution models (SDMs). The SDM ‘ensemble’ approach, which combines predictions across different modelling methods, is believed to improve predictive performance, and is used in many recent SDM studies. Here, we aim to compare the predictive performance of ensemble species distribution models to that of individual models, using a large presence-absence dataset of eucalypt tree species. To test model performance, we divided our dataset into calibration and evaluation folds using two spatial blocking strategies (checkerboard-pattern and latitudinal slicing). We calibrated and cross-validated all models within the calibration folds, using both repeated random division of data (a common approach) and spatial blocking. Ensembles were built using the software package ‘biomod2’, with standard (“untuned”) settings. Boosted regression tree (BRT) models were also fitted to the same data, tuned according to published procedures. We then used evaluation folds to compare ensembles against both their component untuned individual models, and against the BRTs. We used area under the receiver-operating characteristic curve (AUC) and log-likelihood for assessing model performance. In all our tests, ensemble models performed well, but not consistently better than their component untuned individual models or tuned BRTs across all tests. Moreover, choosing untuned individual models with best cross-validation performance also yielded good external performance, with blocked cross-validation proving better suited for this choice, in this study, than repeated random cross-validation. The latitudinal slice test was only possible for four species; this showed some individual models, and particularly the tuned one, performing better than ensembles. This study shows no particular benefit to using ensembles over individual tuned models. It also suggests that further robust testing of performance is required for situations where models are used to predict to distant places or environments.</description><subject>BIOMOD</subject><subject>consensus forecast</subject><subject>model performance</subject><subject>model tuning</subject><subject>spatial blocking</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2020</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjkESwUAQRWdjobC27QsgobiAohzAfqqT6dAqM5NMt-D2BGVv9Rev_qtnzDTP5utsky9ceqCba3tpl0XXLYfmdiRRDie4nUnPlICCkC9qAh8d1XWPWABdh0HxRPEqUMUEHu_sWXrcJHJcKncEDaUX9BhKgliBNFQyCTgWTVxclWP4eGVsBhXWQpPvjsxivztuDzOHiiUr2Saxx_SweWb7dPtOt7_01f-PJ2TTW7U</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Hao, Tianxiao</creator><creator>Elith, Jane</creator><creator>Lahoz‐Monfort, José J.</creator><creator>Guillera‐Arroita, Gurutzeta</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-8387-5739</orcidid><orcidid>https://orcid.org/0000-0002-8706-0326</orcidid><orcidid>https://orcid.org/0000-0002-0845-7035</orcidid><orcidid>https://orcid.org/0000-0003-4363-1956</orcidid></search><sort><creationdate>20200312</creationdate><title>Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models</title><author>Hao, Tianxiao ; Elith, Jane ; Lahoz‐Monfort, José J. ; Guillera‐Arroita, Gurutzeta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_tqjq2bvv23</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BIOMOD</topic><topic>consensus forecast</topic><topic>model performance</topic><topic>model tuning</topic><topic>spatial blocking</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao, Tianxiao</creatorcontrib><creatorcontrib>Elith, Jane</creatorcontrib><creatorcontrib>Lahoz‐Monfort, José J.</creatorcontrib><creatorcontrib>Guillera‐Arroita, Gurutzeta</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao, Tianxiao</au><au>Elith, Jane</au><au>Lahoz‐Monfort, José J.</au><au>Guillera‐Arroita, Gurutzeta</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models</title><date>2020-03-12</date><risdate>2020</risdate><abstract>Predictive performance is important to many applications of species distribution models (SDMs). The SDM ‘ensemble’ approach, which combines predictions across different modelling methods, is believed to improve predictive performance, and is used in many recent SDM studies. Here, we aim to compare the predictive performance of ensemble species distribution models to that of individual models, using a large presence-absence dataset of eucalypt tree species. To test model performance, we divided our dataset into calibration and evaluation folds using two spatial blocking strategies (checkerboard-pattern and latitudinal slicing). We calibrated and cross-validated all models within the calibration folds, using both repeated random division of data (a common approach) and spatial blocking. Ensembles were built using the software package ‘biomod2’, with standard (“untuned”) settings. Boosted regression tree (BRT) models were also fitted to the same data, tuned according to published procedures. We then used evaluation folds to compare ensembles against both their component untuned individual models, and against the BRTs. We used area under the receiver-operating characteristic curve (AUC) and log-likelihood for assessing model performance. In all our tests, ensemble models performed well, but not consistently better than their component untuned individual models or tuned BRTs across all tests. Moreover, choosing untuned individual models with best cross-validation performance also yielded good external performance, with blocked cross-validation proving better suited for this choice, in this study, than repeated random cross-validation. The latitudinal slice test was only possible for four species; this showed some individual models, and particularly the tuned one, performing better than ensembles. This study shows no particular benefit to using ensembles over individual tuned models. It also suggests that further robust testing of performance is required for situations where models are used to predict to distant places or environments.</abstract><pub>Dryad</pub><doi>10.5061/dryad.tqjq2bvv2</doi><orcidid>https://orcid.org/0000-0002-8387-5739</orcidid><orcidid>https://orcid.org/0000-0002-8706-0326</orcidid><orcidid>https://orcid.org/0000-0002-0845-7035</orcidid><orcidid>https://orcid.org/0000-0003-4363-1956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5061/dryad.tqjq2bvv2
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5061_dryad_tqjq2bvv2
source DataCite
subjects BIOMOD
consensus forecast
model performance
model tuning
spatial blocking
title Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Hao,%20Tianxiao&rft.date=2020-03-12&rft_id=info:doi/10.5061/dryad.tqjq2bvv2&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_tqjq2bvv2%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true