Data from: Coherent evolution of superexchange interaction in seconds long optical clock spectroscopy

Measurement science now connects strongly with engineering of quantum coherence, many-body states, and entanglement. To scale up the performance of an atomic clock using a degenerate Fermi gas loaded in a three-dimensional optical lattice, we must understand complex many-body Hamiltonians to ensure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Milner, William, Lannig, Stefan, Mamaev, Mikhail, Yan, Lingfeng, Chu, Anjun, Lewis, Ben, Frankel, Max, Hutson, Ross, Rey, Ana-Maria, Ye, Jun
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Milner, William
Lannig, Stefan
Mamaev, Mikhail
Yan, Lingfeng
Chu, Anjun
Lewis, Ben
Frankel, Max
Hutson, Ross
Rey, Ana-Maria
Ye, Jun
description Measurement science now connects strongly with engineering of quantum coherence, many-body states, and entanglement. To scale up the performance of an atomic clock using a degenerate Fermi gas loaded in a three-dimensional optical lattice, we must understand complex many-body Hamiltonians to ensure meaningful gains for metrological applications. In this work, we use a highly filled Sr 3D lattice to study the effect of a tunable Fermi-Hubbard Hamiltonian. The clock laser introduces a spin-orbit coupling spiral phase and breaks the isotropy of superexchange interactions, changing the Heisenberg spin model into one exhibiting XXZ-type spin anisotropy. By tuning the lattice confinement and applying imaging spectroscopy we map out favorable atomic coherence regimes. With weak transverse confinement, both s- and p-wave interactions contribute to decoherence and atom loss, and their contributions can be balanced. At deep transverse confinement, we directly observe coherent superexchange interactions, tunable via on-site interaction and site-to-site energy shift, on the clock Ramsey fringe contrast over timescales of multiple seconds. This study provides a groundwork for using a 3D optical lattice clock to probe quantum magnetism and spin entanglement.
doi_str_mv 10.5061/dryad.qv9s4mwq5
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_qv9s4mwq5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_qv9s4mwq5</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_qv9s4mwq53</originalsourceid><addsrcrecordid>eNqVjrkOwjAQRN1QIKCm3R8AEnFI0HKID6C3VutNYuF4jW2O_D2HED3VSDN6mqfUuCymy2JVzkzs0Ewvt3VatPfLsq94hxmhitJuYCsNR_YZ-Cbumq14kArSNbzaBzXoawbrM0ekz2g9JCbxJoETX4OEbAkdkBM6QwpMOUoiCd1Q9Sp0iUffHKjZYX_aHifm9U42sw7Rthg7XRb6Lao_ovonOv-feAIU9VPM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Data from: Coherent evolution of superexchange interaction in seconds long optical clock spectroscopy</title><source>DataCite</source><creator>Milner, William ; Lannig, Stefan ; Mamaev, Mikhail ; Yan, Lingfeng ; Chu, Anjun ; Lewis, Ben ; Frankel, Max ; Hutson, Ross ; Rey, Ana-Maria ; Ye, Jun</creator><creatorcontrib>Milner, William ; Lannig, Stefan ; Mamaev, Mikhail ; Yan, Lingfeng ; Chu, Anjun ; Lewis, Ben ; Frankel, Max ; Hutson, Ross ; Rey, Ana-Maria ; Ye, Jun</creatorcontrib><description>Measurement science now connects strongly with engineering of quantum coherence, many-body states, and entanglement. To scale up the performance of an atomic clock using a degenerate Fermi gas loaded in a three-dimensional optical lattice, we must understand complex many-body Hamiltonians to ensure meaningful gains for metrological applications. In this work, we use a highly filled Sr 3D lattice to study the effect of a tunable Fermi-Hubbard Hamiltonian. The clock laser introduces a spin-orbit coupling spiral phase and breaks the isotropy of superexchange interactions, changing the Heisenberg spin model into one exhibiting XXZ-type spin anisotropy. By tuning the lattice confinement and applying imaging spectroscopy we map out favorable atomic coherence regimes. With weak transverse confinement, both s- and p-wave interactions contribute to decoherence and atom loss, and their contributions can be balanced. At deep transverse confinement, we directly observe coherent superexchange interactions, tunable via on-site interaction and site-to-site energy shift, on the clock Ramsey fringe contrast over timescales of multiple seconds. This study provides a groundwork for using a 3D optical lattice clock to probe quantum magnetism and spin entanglement.</description><identifier>DOI: 10.5061/dryad.qv9s4mwq5</identifier><language>eng</language><publisher>Dryad</publisher><subject>Atomic physics ; FOS: Physical sciences ; Physics ; Quantum optics</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2243-5625 ; 0000-0003-0076-2112 ; 0000-0003-0510-0775 ; 0009-0004-3575-8724 ; 0000-0001-9788-9165 ; 0000-0002-9775-6407 ; 0000-0001-8965-2942 ; 0000-0001-8489-9831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.qv9s4mwq5$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Milner, William</creatorcontrib><creatorcontrib>Lannig, Stefan</creatorcontrib><creatorcontrib>Mamaev, Mikhail</creatorcontrib><creatorcontrib>Yan, Lingfeng</creatorcontrib><creatorcontrib>Chu, Anjun</creatorcontrib><creatorcontrib>Lewis, Ben</creatorcontrib><creatorcontrib>Frankel, Max</creatorcontrib><creatorcontrib>Hutson, Ross</creatorcontrib><creatorcontrib>Rey, Ana-Maria</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><title>Data from: Coherent evolution of superexchange interaction in seconds long optical clock spectroscopy</title><description>Measurement science now connects strongly with engineering of quantum coherence, many-body states, and entanglement. To scale up the performance of an atomic clock using a degenerate Fermi gas loaded in a three-dimensional optical lattice, we must understand complex many-body Hamiltonians to ensure meaningful gains for metrological applications. In this work, we use a highly filled Sr 3D lattice to study the effect of a tunable Fermi-Hubbard Hamiltonian. The clock laser introduces a spin-orbit coupling spiral phase and breaks the isotropy of superexchange interactions, changing the Heisenberg spin model into one exhibiting XXZ-type spin anisotropy. By tuning the lattice confinement and applying imaging spectroscopy we map out favorable atomic coherence regimes. With weak transverse confinement, both s- and p-wave interactions contribute to decoherence and atom loss, and their contributions can be balanced. At deep transverse confinement, we directly observe coherent superexchange interactions, tunable via on-site interaction and site-to-site energy shift, on the clock Ramsey fringe contrast over timescales of multiple seconds. This study provides a groundwork for using a 3D optical lattice clock to probe quantum magnetism and spin entanglement.</description><subject>Atomic physics</subject><subject>FOS: Physical sciences</subject><subject>Physics</subject><subject>Quantum optics</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2024</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrkOwjAQRN1QIKCm3R8AEnFI0HKID6C3VutNYuF4jW2O_D2HED3VSDN6mqfUuCymy2JVzkzs0Ewvt3VatPfLsq94hxmhitJuYCsNR_YZ-Cbumq14kArSNbzaBzXoawbrM0ekz2g9JCbxJoETX4OEbAkdkBM6QwpMOUoiCd1Q9Sp0iUffHKjZYX_aHifm9U42sw7Rthg7XRb6Lao_ovonOv-feAIU9VPM</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Milner, William</creator><creator>Lannig, Stefan</creator><creator>Mamaev, Mikhail</creator><creator>Yan, Lingfeng</creator><creator>Chu, Anjun</creator><creator>Lewis, Ben</creator><creator>Frankel, Max</creator><creator>Hutson, Ross</creator><creator>Rey, Ana-Maria</creator><creator>Ye, Jun</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-2243-5625</orcidid><orcidid>https://orcid.org/0000-0003-0076-2112</orcidid><orcidid>https://orcid.org/0000-0003-0510-0775</orcidid><orcidid>https://orcid.org/0009-0004-3575-8724</orcidid><orcidid>https://orcid.org/0000-0001-9788-9165</orcidid><orcidid>https://orcid.org/0000-0002-9775-6407</orcidid><orcidid>https://orcid.org/0000-0001-8965-2942</orcidid><orcidid>https://orcid.org/0000-0001-8489-9831</orcidid></search><sort><creationdate>20241115</creationdate><title>Data from: Coherent evolution of superexchange interaction in seconds long optical clock spectroscopy</title><author>Milner, William ; Lannig, Stefan ; Mamaev, Mikhail ; Yan, Lingfeng ; Chu, Anjun ; Lewis, Ben ; Frankel, Max ; Hutson, Ross ; Rey, Ana-Maria ; Ye, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_qv9s4mwq53</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic physics</topic><topic>FOS: Physical sciences</topic><topic>Physics</topic><topic>Quantum optics</topic><toplevel>online_resources</toplevel><creatorcontrib>Milner, William</creatorcontrib><creatorcontrib>Lannig, Stefan</creatorcontrib><creatorcontrib>Mamaev, Mikhail</creatorcontrib><creatorcontrib>Yan, Lingfeng</creatorcontrib><creatorcontrib>Chu, Anjun</creatorcontrib><creatorcontrib>Lewis, Ben</creatorcontrib><creatorcontrib>Frankel, Max</creatorcontrib><creatorcontrib>Hutson, Ross</creatorcontrib><creatorcontrib>Rey, Ana-Maria</creatorcontrib><creatorcontrib>Ye, Jun</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Milner, William</au><au>Lannig, Stefan</au><au>Mamaev, Mikhail</au><au>Yan, Lingfeng</au><au>Chu, Anjun</au><au>Lewis, Ben</au><au>Frankel, Max</au><au>Hutson, Ross</au><au>Rey, Ana-Maria</au><au>Ye, Jun</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Data from: Coherent evolution of superexchange interaction in seconds long optical clock spectroscopy</title><date>2024-11-15</date><risdate>2024</risdate><abstract>Measurement science now connects strongly with engineering of quantum coherence, many-body states, and entanglement. To scale up the performance of an atomic clock using a degenerate Fermi gas loaded in a three-dimensional optical lattice, we must understand complex many-body Hamiltonians to ensure meaningful gains for metrological applications. In this work, we use a highly filled Sr 3D lattice to study the effect of a tunable Fermi-Hubbard Hamiltonian. The clock laser introduces a spin-orbit coupling spiral phase and breaks the isotropy of superexchange interactions, changing the Heisenberg spin model into one exhibiting XXZ-type spin anisotropy. By tuning the lattice confinement and applying imaging spectroscopy we map out favorable atomic coherence regimes. With weak transverse confinement, both s- and p-wave interactions contribute to decoherence and atom loss, and their contributions can be balanced. At deep transverse confinement, we directly observe coherent superexchange interactions, tunable via on-site interaction and site-to-site energy shift, on the clock Ramsey fringe contrast over timescales of multiple seconds. This study provides a groundwork for using a 3D optical lattice clock to probe quantum magnetism and spin entanglement.</abstract><pub>Dryad</pub><doi>10.5061/dryad.qv9s4mwq5</doi><orcidid>https://orcid.org/0000-0002-2243-5625</orcidid><orcidid>https://orcid.org/0000-0003-0076-2112</orcidid><orcidid>https://orcid.org/0000-0003-0510-0775</orcidid><orcidid>https://orcid.org/0009-0004-3575-8724</orcidid><orcidid>https://orcid.org/0000-0001-9788-9165</orcidid><orcidid>https://orcid.org/0000-0002-9775-6407</orcidid><orcidid>https://orcid.org/0000-0001-8965-2942</orcidid><orcidid>https://orcid.org/0000-0001-8489-9831</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5061/dryad.qv9s4mwq5
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5061_dryad_qv9s4mwq5
source DataCite
subjects Atomic physics
FOS: Physical sciences
Physics
Quantum optics
title Data from: Coherent evolution of superexchange interaction in seconds long optical clock spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Milner,%20William&rft.date=2024-11-15&rft_id=info:doi/10.5061/dryad.qv9s4mwq5&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_qv9s4mwq5%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true