Directed endozoochorous dispersal by scavengers facilitate sexual reproduction in otherwise clonal plants at cadaver sites

The regeneration niche of many plant species involves spatially and temporally unpredictable disturbances, called recruitment windows of opportunity. However, even species with clear dispersal adaptations such as fleshy berries may not successfully reach such elusive regeneration microsites. Ericace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arnberg, Mie P., Frank, Shane C., Blaalid, Rakel, Davey, Marie L., Eycott, Amy E., Steyaert, Sam M. J. G.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Arnberg, Mie P.
Frank, Shane C.
Blaalid, Rakel
Davey, Marie L.
Eycott, Amy E.
Steyaert, Sam M. J. G.
description The regeneration niche of many plant species involves spatially and temporally unpredictable disturbances, called recruitment windows of opportunity. However, even species with clear dispersal adaptations such as fleshy berries may not successfully reach such elusive regeneration microsites. Ericaceous, berry-producing species in the northern hemisphere demonstrate this dispersal limitation. They are said to display a reproductive paradox owing to their lack of regeneration in apparently suitable microsites despite considerable investment in producing large quantities of berries. Cadavers generate vegetation-denuded and nutrient-rich disturbances termed cadaver decomposition islands. Cadavers attract facultative scavengers with considerable capacity for endozoochorous seed dispersal. We hypothesize that cadaver decomposition islands facilitate recruitment in berry-producing ericaceous species due to endozoochorous dispersal directed towards favorable microsites with low competition. We examined seedling establishment within a permanent, semi-regular 10 × 10 m grid across an ungulate mass die-off on the Hardangervidda plateau in southeastern Norway. Competing models regarding the relative importance of factors governing recruitment were evaluated, specifically cadaver location (elevated seed rain) and microsite conditions (competition). We found that cadaver decomposition islands did facilitate seedling establishment, as cadaver density was the best predictor of seedling distribution. Other important factors governing seedling establishment such as percentage cover of soil and vascular plants alone were inadequate to explain seedling establishment. Synthesis: This study provides a novel understanding of sexual reproduction in species with cryptic generative reproduction. The directed nature of endozoochorous dispersal combined with long-distance dispersal abilities of medium to large vertebrate scavengers towards cadavers allows plants to exploit the advantageous but ephemeral resource provided by cadaver decomposition islands.
doi_str_mv 10.5061/dryad.fn2z34ttz
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_fn2z34ttz</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_fn2z34ttz</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_fn2z34ttz3</originalsourceid><addsrcrecordid>eNqVjrFOA0EMRLehQEBN6x9IckeAHwiJ-AD6ldn1JZaW9cn2Jdx9PQtC9FSj0czYL4T7vls_dc_9JuuMeT3Uh2X76L5ch-WFlZJTBqpZFpF0EpXJILONpIYF3mewhGeqx-ZhwMSFHZ3A6HNqudKokqfkLBW4gviJ9MJGkIrUVhgLVjdAh4S5HVIwdrLbcDVgMbr71ZuwOezfdq-rjN6eOMVR-QN1jn0Xv-njD338o9_-f_EFbAxcTg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Directed endozoochorous dispersal by scavengers facilitate sexual reproduction in otherwise clonal plants at cadaver sites</title><source>DataCite</source><creator>Arnberg, Mie P. ; Frank, Shane C. ; Blaalid, Rakel ; Davey, Marie L. ; Eycott, Amy E. ; Steyaert, Sam M. J. G.</creator><creatorcontrib>Arnberg, Mie P. ; Frank, Shane C. ; Blaalid, Rakel ; Davey, Marie L. ; Eycott, Amy E. ; Steyaert, Sam M. J. G.</creatorcontrib><description>The regeneration niche of many plant species involves spatially and temporally unpredictable disturbances, called recruitment windows of opportunity. However, even species with clear dispersal adaptations such as fleshy berries may not successfully reach such elusive regeneration microsites. Ericaceous, berry-producing species in the northern hemisphere demonstrate this dispersal limitation. They are said to display a reproductive paradox owing to their lack of regeneration in apparently suitable microsites despite considerable investment in producing large quantities of berries. Cadavers generate vegetation-denuded and nutrient-rich disturbances termed cadaver decomposition islands. Cadavers attract facultative scavengers with considerable capacity for endozoochorous seed dispersal. We hypothesize that cadaver decomposition islands facilitate recruitment in berry-producing ericaceous species due to endozoochorous dispersal directed towards favorable microsites with low competition. We examined seedling establishment within a permanent, semi-regular 10 × 10 m grid across an ungulate mass die-off on the Hardangervidda plateau in southeastern Norway. Competing models regarding the relative importance of factors governing recruitment were evaluated, specifically cadaver location (elevated seed rain) and microsite conditions (competition). We found that cadaver decomposition islands did facilitate seedling establishment, as cadaver density was the best predictor of seedling distribution. Other important factors governing seedling establishment such as percentage cover of soil and vascular plants alone were inadequate to explain seedling establishment. Synthesis: This study provides a novel understanding of sexual reproduction in species with cryptic generative reproduction. The directed nature of endozoochorous dispersal combined with long-distance dispersal abilities of medium to large vertebrate scavengers towards cadavers allows plants to exploit the advantageous but ephemeral resource provided by cadaver decomposition islands.</description><identifier>DOI: 10.5061/dryad.fn2z34ttz</identifier><language>eng</language><publisher>Dryad</publisher><subject>Cadaver decomposition island ; Directed seed dispersal ; Ericaceae ; FOS: Biological sciences ; Rangifer tarandus ; Recruitment window of opportunity ; Reproductive paradox ; Seedling establishment</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3569-778X ; 0000-0002-8609-1091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.fn2z34ttz$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Arnberg, Mie P.</creatorcontrib><creatorcontrib>Frank, Shane C.</creatorcontrib><creatorcontrib>Blaalid, Rakel</creatorcontrib><creatorcontrib>Davey, Marie L.</creatorcontrib><creatorcontrib>Eycott, Amy E.</creatorcontrib><creatorcontrib>Steyaert, Sam M. J. G.</creatorcontrib><title>Directed endozoochorous dispersal by scavengers facilitate sexual reproduction in otherwise clonal plants at cadaver sites</title><description>The regeneration niche of many plant species involves spatially and temporally unpredictable disturbances, called recruitment windows of opportunity. However, even species with clear dispersal adaptations such as fleshy berries may not successfully reach such elusive regeneration microsites. Ericaceous, berry-producing species in the northern hemisphere demonstrate this dispersal limitation. They are said to display a reproductive paradox owing to their lack of regeneration in apparently suitable microsites despite considerable investment in producing large quantities of berries. Cadavers generate vegetation-denuded and nutrient-rich disturbances termed cadaver decomposition islands. Cadavers attract facultative scavengers with considerable capacity for endozoochorous seed dispersal. We hypothesize that cadaver decomposition islands facilitate recruitment in berry-producing ericaceous species due to endozoochorous dispersal directed towards favorable microsites with low competition. We examined seedling establishment within a permanent, semi-regular 10 × 10 m grid across an ungulate mass die-off on the Hardangervidda plateau in southeastern Norway. Competing models regarding the relative importance of factors governing recruitment were evaluated, specifically cadaver location (elevated seed rain) and microsite conditions (competition). We found that cadaver decomposition islands did facilitate seedling establishment, as cadaver density was the best predictor of seedling distribution. Other important factors governing seedling establishment such as percentage cover of soil and vascular plants alone were inadequate to explain seedling establishment. Synthesis: This study provides a novel understanding of sexual reproduction in species with cryptic generative reproduction. The directed nature of endozoochorous dispersal combined with long-distance dispersal abilities of medium to large vertebrate scavengers towards cadavers allows plants to exploit the advantageous but ephemeral resource provided by cadaver decomposition islands.</description><subject>Cadaver decomposition island</subject><subject>Directed seed dispersal</subject><subject>Ericaceae</subject><subject>FOS: Biological sciences</subject><subject>Rangifer tarandus</subject><subject>Recruitment window of opportunity</subject><subject>Reproductive paradox</subject><subject>Seedling establishment</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjrFOA0EMRLehQEBN6x9IckeAHwiJ-AD6ldn1JZaW9cn2Jdx9PQtC9FSj0czYL4T7vls_dc_9JuuMeT3Uh2X76L5ch-WFlZJTBqpZFpF0EpXJILONpIYF3mewhGeqx-ZhwMSFHZ3A6HNqudKokqfkLBW4gviJ9MJGkIrUVhgLVjdAh4S5HVIwdrLbcDVgMbr71ZuwOezfdq-rjN6eOMVR-QN1jn0Xv-njD338o9_-f_EFbAxcTg</recordid><startdate>20221229</startdate><enddate>20221229</enddate><creator>Arnberg, Mie P.</creator><creator>Frank, Shane C.</creator><creator>Blaalid, Rakel</creator><creator>Davey, Marie L.</creator><creator>Eycott, Amy E.</creator><creator>Steyaert, Sam M. J. G.</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-3569-778X</orcidid><orcidid>https://orcid.org/0000-0002-8609-1091</orcidid></search><sort><creationdate>20221229</creationdate><title>Directed endozoochorous dispersal by scavengers facilitate sexual reproduction in otherwise clonal plants at cadaver sites</title><author>Arnberg, Mie P. ; Frank, Shane C. ; Blaalid, Rakel ; Davey, Marie L. ; Eycott, Amy E. ; Steyaert, Sam M. J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_fn2z34ttz3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cadaver decomposition island</topic><topic>Directed seed dispersal</topic><topic>Ericaceae</topic><topic>FOS: Biological sciences</topic><topic>Rangifer tarandus</topic><topic>Recruitment window of opportunity</topic><topic>Reproductive paradox</topic><topic>Seedling establishment</topic><toplevel>online_resources</toplevel><creatorcontrib>Arnberg, Mie P.</creatorcontrib><creatorcontrib>Frank, Shane C.</creatorcontrib><creatorcontrib>Blaalid, Rakel</creatorcontrib><creatorcontrib>Davey, Marie L.</creatorcontrib><creatorcontrib>Eycott, Amy E.</creatorcontrib><creatorcontrib>Steyaert, Sam M. J. G.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arnberg, Mie P.</au><au>Frank, Shane C.</au><au>Blaalid, Rakel</au><au>Davey, Marie L.</au><au>Eycott, Amy E.</au><au>Steyaert, Sam M. J. G.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Directed endozoochorous dispersal by scavengers facilitate sexual reproduction in otherwise clonal plants at cadaver sites</title><date>2022-12-29</date><risdate>2022</risdate><abstract>The regeneration niche of many plant species involves spatially and temporally unpredictable disturbances, called recruitment windows of opportunity. However, even species with clear dispersal adaptations such as fleshy berries may not successfully reach such elusive regeneration microsites. Ericaceous, berry-producing species in the northern hemisphere demonstrate this dispersal limitation. They are said to display a reproductive paradox owing to their lack of regeneration in apparently suitable microsites despite considerable investment in producing large quantities of berries. Cadavers generate vegetation-denuded and nutrient-rich disturbances termed cadaver decomposition islands. Cadavers attract facultative scavengers with considerable capacity for endozoochorous seed dispersal. We hypothesize that cadaver decomposition islands facilitate recruitment in berry-producing ericaceous species due to endozoochorous dispersal directed towards favorable microsites with low competition. We examined seedling establishment within a permanent, semi-regular 10 × 10 m grid across an ungulate mass die-off on the Hardangervidda plateau in southeastern Norway. Competing models regarding the relative importance of factors governing recruitment were evaluated, specifically cadaver location (elevated seed rain) and microsite conditions (competition). We found that cadaver decomposition islands did facilitate seedling establishment, as cadaver density was the best predictor of seedling distribution. Other important factors governing seedling establishment such as percentage cover of soil and vascular plants alone were inadequate to explain seedling establishment. Synthesis: This study provides a novel understanding of sexual reproduction in species with cryptic generative reproduction. The directed nature of endozoochorous dispersal combined with long-distance dispersal abilities of medium to large vertebrate scavengers towards cadavers allows plants to exploit the advantageous but ephemeral resource provided by cadaver decomposition islands.</abstract><pub>Dryad</pub><doi>10.5061/dryad.fn2z34ttz</doi><orcidid>https://orcid.org/0000-0002-3569-778X</orcidid><orcidid>https://orcid.org/0000-0002-8609-1091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5061/dryad.fn2z34ttz
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5061_dryad_fn2z34ttz
source DataCite
subjects Cadaver decomposition island
Directed seed dispersal
Ericaceae
FOS: Biological sciences
Rangifer tarandus
Recruitment window of opportunity
Reproductive paradox
Seedling establishment
title Directed endozoochorous dispersal by scavengers facilitate sexual reproduction in otherwise clonal plants at cadaver sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Arnberg,%20Mie%20P.&rft.date=2022-12-29&rft_id=info:doi/10.5061/dryad.fn2z34ttz&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_fn2z34ttz%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true