Predicting plant species climate preferences on the basis of mechanistic traits

Improved estimation of climate niches is critical, given climate change. Plant adaptation to climate depends on their physiological traits and their distributions, yet traits are rarely used to inform the estimation of species climate niches, and the power of a trait-based approach has been controve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Medeiros, Camila D., Henry, Christian, Trueba, Santiago, Anghel, Ioana, Dannet Diaz De Leon Guerrero, Samantha, Pivovaroff, Alexandria, Fletcher, Leila R., John, Grace P., Lutz, James A., Mendez Alonzo, Rodrigo, Sack, Lawren
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Medeiros, Camila D.
Henry, Christian
Trueba, Santiago
Anghel, Ioana
Dannet Diaz De Leon Guerrero, Samantha
Pivovaroff, Alexandria
Fletcher, Leila R.
John, Grace P.
Lutz, James A.
Mendez Alonzo, Rodrigo
Sack, Lawren
description Improved estimation of climate niches is critical, given climate change. Plant adaptation to climate depends on their physiological traits and their distributions, yet traits are rarely used to inform the estimation of species climate niches, and the power of a trait-based approach has been controversial, given the many ecological factors and methodological issues that may result in decoupling of species’ traits from their native climate. For 107 species across six ecosystems of California, we tested the hypothesis that mechanistic leaf and wood traits can robustly predict the mean of diverse species’ climate distributions, when combining methodological improvements from previous studies, including standard trait measurements and sampling plants growing together at few sites. Further, we introduce an approach to quantify species’ trait-climate mismatch. We demonstrate a strong power to predict species' mean climate from traits. As hypothesized, the prediction of species' mean climate is stronger (and mismatch lower) when traits are sampled for individuals closer to species’ mean climates. Improved resolution of species’ climate niches based on mechanistic traits can importantly inform conservation of vulnerable species under the threat of climatic shifts in upcoming decades.
doi_str_mv 10.5061/dryad.cnp5hqcb2
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_cnp5hqcb2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_cnp5hqcb2</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_cnp5hqcb23</originalsourceid><addsrcrecordid>eNqVjjsOwjAQRN1QIKCm3QuQDyhcAIHooKC3NusNXikxxt4mtycgRE81mpHe6BmzrquiqfZ16dKIrqAQG_-kdjs3l2tiJ6QS7hB7DAo5MglnoF4GVIaYuOPEgabtEUA9Q4tZptLBwOQxSFYh0ISieWlmHfaZV99cmPJ0vB3OG4eKJMo2puk3jbau7FvJfpTsT2n3P_ECiAZK9g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Predicting plant species climate preferences on the basis of mechanistic traits</title><source>DataCite</source><creator>Medeiros, Camila D. ; Henry, Christian ; Trueba, Santiago ; Anghel, Ioana ; Dannet Diaz De Leon Guerrero, Samantha ; Pivovaroff, Alexandria ; Fletcher, Leila R. ; John, Grace P. ; Lutz, James A. ; Mendez Alonzo, Rodrigo ; Sack, Lawren</creator><creatorcontrib>Medeiros, Camila D. ; Henry, Christian ; Trueba, Santiago ; Anghel, Ioana ; Dannet Diaz De Leon Guerrero, Samantha ; Pivovaroff, Alexandria ; Fletcher, Leila R. ; John, Grace P. ; Lutz, James A. ; Mendez Alonzo, Rodrigo ; Sack, Lawren</creatorcontrib><description>Improved estimation of climate niches is critical, given climate change. Plant adaptation to climate depends on their physiological traits and their distributions, yet traits are rarely used to inform the estimation of species climate niches, and the power of a trait-based approach has been controversial, given the many ecological factors and methodological issues that may result in decoupling of species’ traits from their native climate. For 107 species across six ecosystems of California, we tested the hypothesis that mechanistic leaf and wood traits can robustly predict the mean of diverse species’ climate distributions, when combining methodological improvements from previous studies, including standard trait measurements and sampling plants growing together at few sites. Further, we introduce an approach to quantify species’ trait-climate mismatch. We demonstrate a strong power to predict species' mean climate from traits. As hypothesized, the prediction of species' mean climate is stronger (and mismatch lower) when traits are sampled for individuals closer to species’ mean climates. Improved resolution of species’ climate niches based on mechanistic traits can importantly inform conservation of vulnerable species under the threat of climatic shifts in upcoming decades.</description><identifier>DOI: 10.5061/dryad.cnp5hqcb2</identifier><language>eng</language><publisher>Dryad</publisher><subject>Ecophysiology ; FOS: Biological sciences ; functional traits ; plant climate relationships ; plant responses to aridity ; trait multifunctionality ; trait-climate mismatch</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5822-5603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.cnp5hqcb2$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Medeiros, Camila D.</creatorcontrib><creatorcontrib>Henry, Christian</creatorcontrib><creatorcontrib>Trueba, Santiago</creatorcontrib><creatorcontrib>Anghel, Ioana</creatorcontrib><creatorcontrib>Dannet Diaz De Leon Guerrero, Samantha</creatorcontrib><creatorcontrib>Pivovaroff, Alexandria</creatorcontrib><creatorcontrib>Fletcher, Leila R.</creatorcontrib><creatorcontrib>John, Grace P.</creatorcontrib><creatorcontrib>Lutz, James A.</creatorcontrib><creatorcontrib>Mendez Alonzo, Rodrigo</creatorcontrib><creatorcontrib>Sack, Lawren</creatorcontrib><title>Predicting plant species climate preferences on the basis of mechanistic traits</title><description>Improved estimation of climate niches is critical, given climate change. Plant adaptation to climate depends on their physiological traits and their distributions, yet traits are rarely used to inform the estimation of species climate niches, and the power of a trait-based approach has been controversial, given the many ecological factors and methodological issues that may result in decoupling of species’ traits from their native climate. For 107 species across six ecosystems of California, we tested the hypothesis that mechanistic leaf and wood traits can robustly predict the mean of diverse species’ climate distributions, when combining methodological improvements from previous studies, including standard trait measurements and sampling plants growing together at few sites. Further, we introduce an approach to quantify species’ trait-climate mismatch. We demonstrate a strong power to predict species' mean climate from traits. As hypothesized, the prediction of species' mean climate is stronger (and mismatch lower) when traits are sampled for individuals closer to species’ mean climates. Improved resolution of species’ climate niches based on mechanistic traits can importantly inform conservation of vulnerable species under the threat of climatic shifts in upcoming decades.</description><subject>Ecophysiology</subject><subject>FOS: Biological sciences</subject><subject>functional traits</subject><subject>plant climate relationships</subject><subject>plant responses to aridity</subject><subject>trait multifunctionality</subject><subject>trait-climate mismatch</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjjsOwjAQRN1QIKCm3QuQDyhcAIHooKC3NusNXikxxt4mtycgRE81mpHe6BmzrquiqfZ16dKIrqAQG_-kdjs3l2tiJ6QS7hB7DAo5MglnoF4GVIaYuOPEgabtEUA9Q4tZptLBwOQxSFYh0ISieWlmHfaZV99cmPJ0vB3OG4eKJMo2puk3jbau7FvJfpTsT2n3P_ECiAZK9g</recordid><startdate>20230818</startdate><enddate>20230818</enddate><creator>Medeiros, Camila D.</creator><creator>Henry, Christian</creator><creator>Trueba, Santiago</creator><creator>Anghel, Ioana</creator><creator>Dannet Diaz De Leon Guerrero, Samantha</creator><creator>Pivovaroff, Alexandria</creator><creator>Fletcher, Leila R.</creator><creator>John, Grace P.</creator><creator>Lutz, James A.</creator><creator>Mendez Alonzo, Rodrigo</creator><creator>Sack, Lawren</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-5822-5603</orcidid></search><sort><creationdate>20230818</creationdate><title>Predicting plant species climate preferences on the basis of mechanistic traits</title><author>Medeiros, Camila D. ; Henry, Christian ; Trueba, Santiago ; Anghel, Ioana ; Dannet Diaz De Leon Guerrero, Samantha ; Pivovaroff, Alexandria ; Fletcher, Leila R. ; John, Grace P. ; Lutz, James A. ; Mendez Alonzo, Rodrigo ; Sack, Lawren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_cnp5hqcb23</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ecophysiology</topic><topic>FOS: Biological sciences</topic><topic>functional traits</topic><topic>plant climate relationships</topic><topic>plant responses to aridity</topic><topic>trait multifunctionality</topic><topic>trait-climate mismatch</topic><toplevel>online_resources</toplevel><creatorcontrib>Medeiros, Camila D.</creatorcontrib><creatorcontrib>Henry, Christian</creatorcontrib><creatorcontrib>Trueba, Santiago</creatorcontrib><creatorcontrib>Anghel, Ioana</creatorcontrib><creatorcontrib>Dannet Diaz De Leon Guerrero, Samantha</creatorcontrib><creatorcontrib>Pivovaroff, Alexandria</creatorcontrib><creatorcontrib>Fletcher, Leila R.</creatorcontrib><creatorcontrib>John, Grace P.</creatorcontrib><creatorcontrib>Lutz, James A.</creatorcontrib><creatorcontrib>Mendez Alonzo, Rodrigo</creatorcontrib><creatorcontrib>Sack, Lawren</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Medeiros, Camila D.</au><au>Henry, Christian</au><au>Trueba, Santiago</au><au>Anghel, Ioana</au><au>Dannet Diaz De Leon Guerrero, Samantha</au><au>Pivovaroff, Alexandria</au><au>Fletcher, Leila R.</au><au>John, Grace P.</au><au>Lutz, James A.</au><au>Mendez Alonzo, Rodrigo</au><au>Sack, Lawren</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Predicting plant species climate preferences on the basis of mechanistic traits</title><date>2023-08-18</date><risdate>2023</risdate><abstract>Improved estimation of climate niches is critical, given climate change. Plant adaptation to climate depends on their physiological traits and their distributions, yet traits are rarely used to inform the estimation of species climate niches, and the power of a trait-based approach has been controversial, given the many ecological factors and methodological issues that may result in decoupling of species’ traits from their native climate. For 107 species across six ecosystems of California, we tested the hypothesis that mechanistic leaf and wood traits can robustly predict the mean of diverse species’ climate distributions, when combining methodological improvements from previous studies, including standard trait measurements and sampling plants growing together at few sites. Further, we introduce an approach to quantify species’ trait-climate mismatch. We demonstrate a strong power to predict species' mean climate from traits. As hypothesized, the prediction of species' mean climate is stronger (and mismatch lower) when traits are sampled for individuals closer to species’ mean climates. Improved resolution of species’ climate niches based on mechanistic traits can importantly inform conservation of vulnerable species under the threat of climatic shifts in upcoming decades.</abstract><pub>Dryad</pub><doi>10.5061/dryad.cnp5hqcb2</doi><orcidid>https://orcid.org/0000-0002-5822-5603</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5061/dryad.cnp5hqcb2
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5061_dryad_cnp5hqcb2
source DataCite
subjects Ecophysiology
FOS: Biological sciences
functional traits
plant climate relationships
plant responses to aridity
trait multifunctionality
trait-climate mismatch
title Predicting plant species climate preferences on the basis of mechanistic traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Medeiros,%20Camila%20D.&rft.date=2023-08-18&rft_id=info:doi/10.5061/dryad.cnp5hqcb2&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_cnp5hqcb2%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true