Data from: Carrying a logger reduces escape flight speed in a passerine bird, but relative logger mass may be a misleading measure of this flight performance detriment
1. The recent boost in bird migration studies following the development of various tracking devices raised awareness of how detrimental attaching devices can be for animals. Such effects can occur during migration, but also immediately post-release if the device impairs escape flight performance and...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1. The recent boost in bird migration studies following the development of
various tracking devices raised awareness of how detrimental attaching
devices can be for animals. Such effects can occur during migration, but
also immediately post-release if the device impairs escape flight
performance and, consequently, the bird’s ability to evade predators. 2.
In this study, we investigated the effect of carrying a device on the
escape flight speed and aerodynamic force production in a migratory
passerine. We recorded upward-directed escape flights of 15 male
blackcaps. Each individual was tested without a tag, and when equipped
with three different leg-loop dummy tags with masses representing around
3%, 5% and 7% of their body mass. The experiment was designed such that
all individuals passed through all treatments in a randomized order. 3. We
found that two factors affected flight speed in roughly equal amounts:
first, tagged escape flights had lower flight speeds compared to the
control flights, irrespective of tag mass. Second, we found an effect of
the total mass, i.e. the sum of the masses of the individual bird and of
the tag, with heavier birds being slower. In contrast, flight speed was
not correlated with relative tag mass in percentage of body mass, the
metric commonly used in ethical guidelines for tag attachment. Aerodynamic
flight force production also depended on total mass, with heavier birds
producing higher forces. But these flight forces did not differ between
flights with or without a tag. 4. We conclude that, when tagging birds, it
is misleading to choose heavy individuals for tagging in order to minimize
the tag mass as a percentage of body mass. This is particularly relevant
in species for which body mass is not necessarily related to size, like
migratory birds that accumulate large fat reserves. The lower escape speed
in “tagged” flights could not be explained by differences in net flight
force production, because these did not differ between flights with and
without a tag. This suggests that the tag also affected pre-flight
take-off dynamics, possibly due to a leg harness-induced reduction in leg
push-off performance. |
---|---|
DOI: | 10.5061/dryad.961nn65 |