Data from: Extrinsic and intrinsic dynamics in movement intermittency

What determines how we move in the world? Motor neuroscience often focusses either on intrinsic rhythmical properties of motor circuits or extrinsic sensorimotor feedback loops. Here we show that the interplay of both intrinsic and extrinsic dynamics is required to explain the intermittency observed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Susilaradeya, Damar, Xu, Wei, Hall, Thomas M, Galan, Ferran, Alter, Kai, Jackson, Andrew
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Susilaradeya, Damar
Xu, Wei
Hall, Thomas M
Galan, Ferran
Alter, Kai
Jackson, Andrew
description What determines how we move in the world? Motor neuroscience often focusses either on intrinsic rhythmical properties of motor circuits or extrinsic sensorimotor feedback loops. Here we show that the interplay of both intrinsic and extrinsic dynamics is required to explain the intermittency observed in continuous tracking movements. Using spatiotemporal perturbations in humans, we demonstrate that apparently discrete submovements made 2-3 times per second reflect constructive interference between motor errors and continuous feedback corrections that are filtered by intrinsic circuitry in the motor system. Local field potentials in monkey motor cortex revealed characteristic signatures of a Kalman filter, giving rise to both low-frequency cortical cycles during movement, and delta oscillations during sleep. We interpret these results within the framework of optimal feedback control, and suggest that the intrinsic rhythmicity of motor cortical networks reflects an internal model of external dynamics, which is used for state estimation during feedback-guided movement.
doi_str_mv 10.5061/dryad.53sq7kn
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_53sq7kn</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_53sq7kn</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_53sq7kn3</originalsourceid><addsrcrecordid>eNqVjk0KwjAQhbNxIerSfS7QmlCq4FYjHsB9GJIpDDVTTYKY29tKPYCrx_vh8Qmx1apu1V7vfCzg67ZJz0PPS2HOkEF2cQhHad45EidyEthL4p_zhSGQS2Mkw_DCgJynGmOgnJFdWYtFB_eEm1lXorqY2-la-fHdUUb7iBQgFquVnTDsF8POGM2_-w99G0SP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Data from: Extrinsic and intrinsic dynamics in movement intermittency</title><source>DataCite</source><creator>Susilaradeya, Damar ; Xu, Wei ; Hall, Thomas M ; Galan, Ferran ; Alter, Kai ; Jackson, Andrew</creator><creatorcontrib>Susilaradeya, Damar ; Xu, Wei ; Hall, Thomas M ; Galan, Ferran ; Alter, Kai ; Jackson, Andrew</creatorcontrib><description>What determines how we move in the world? Motor neuroscience often focusses either on intrinsic rhythmical properties of motor circuits or extrinsic sensorimotor feedback loops. Here we show that the interplay of both intrinsic and extrinsic dynamics is required to explain the intermittency observed in continuous tracking movements. Using spatiotemporal perturbations in humans, we demonstrate that apparently discrete submovements made 2-3 times per second reflect constructive interference between motor errors and continuous feedback corrections that are filtered by intrinsic circuitry in the motor system. Local field potentials in monkey motor cortex revealed characteristic signatures of a Kalman filter, giving rise to both low-frequency cortical cycles during movement, and delta oscillations during sleep. We interpret these results within the framework of optimal feedback control, and suggest that the intrinsic rhythmicity of motor cortical networks reflects an internal model of external dynamics, which is used for state estimation during feedback-guided movement.</description><identifier>DOI: 10.5061/dryad.53sq7kn</identifier><language>eng</language><publisher>Dryad</publisher><subject>Homo Sapiens ; Macaca mulatta ; Motor cortex ; movement intermittency ; optimal feedback control ; Submovements</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.53sq7kn$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Susilaradeya, Damar</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Hall, Thomas M</creatorcontrib><creatorcontrib>Galan, Ferran</creatorcontrib><creatorcontrib>Alter, Kai</creatorcontrib><creatorcontrib>Jackson, Andrew</creatorcontrib><title>Data from: Extrinsic and intrinsic dynamics in movement intermittency</title><description>What determines how we move in the world? Motor neuroscience often focusses either on intrinsic rhythmical properties of motor circuits or extrinsic sensorimotor feedback loops. Here we show that the interplay of both intrinsic and extrinsic dynamics is required to explain the intermittency observed in continuous tracking movements. Using spatiotemporal perturbations in humans, we demonstrate that apparently discrete submovements made 2-3 times per second reflect constructive interference between motor errors and continuous feedback corrections that are filtered by intrinsic circuitry in the motor system. Local field potentials in monkey motor cortex revealed characteristic signatures of a Kalman filter, giving rise to both low-frequency cortical cycles during movement, and delta oscillations during sleep. We interpret these results within the framework of optimal feedback control, and suggest that the intrinsic rhythmicity of motor cortical networks reflects an internal model of external dynamics, which is used for state estimation during feedback-guided movement.</description><subject>Homo Sapiens</subject><subject>Macaca mulatta</subject><subject>Motor cortex</subject><subject>movement intermittency</subject><subject>optimal feedback control</subject><subject>Submovements</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2019</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjk0KwjAQhbNxIerSfS7QmlCq4FYjHsB9GJIpDDVTTYKY29tKPYCrx_vh8Qmx1apu1V7vfCzg67ZJz0PPS2HOkEF2cQhHad45EidyEthL4p_zhSGQS2Mkw_DCgJynGmOgnJFdWYtFB_eEm1lXorqY2-la-fHdUUb7iBQgFquVnTDsF8POGM2_-w99G0SP</recordid><startdate>20190411</startdate><enddate>20190411</enddate><creator>Susilaradeya, Damar</creator><creator>Xu, Wei</creator><creator>Hall, Thomas M</creator><creator>Galan, Ferran</creator><creator>Alter, Kai</creator><creator>Jackson, Andrew</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20190411</creationdate><title>Data from: Extrinsic and intrinsic dynamics in movement intermittency</title><author>Susilaradeya, Damar ; Xu, Wei ; Hall, Thomas M ; Galan, Ferran ; Alter, Kai ; Jackson, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_53sq7kn3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Homo Sapiens</topic><topic>Macaca mulatta</topic><topic>Motor cortex</topic><topic>movement intermittency</topic><topic>optimal feedback control</topic><topic>Submovements</topic><toplevel>online_resources</toplevel><creatorcontrib>Susilaradeya, Damar</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Hall, Thomas M</creatorcontrib><creatorcontrib>Galan, Ferran</creatorcontrib><creatorcontrib>Alter, Kai</creatorcontrib><creatorcontrib>Jackson, Andrew</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Susilaradeya, Damar</au><au>Xu, Wei</au><au>Hall, Thomas M</au><au>Galan, Ferran</au><au>Alter, Kai</au><au>Jackson, Andrew</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Data from: Extrinsic and intrinsic dynamics in movement intermittency</title><date>2019-04-11</date><risdate>2019</risdate><abstract>What determines how we move in the world? Motor neuroscience often focusses either on intrinsic rhythmical properties of motor circuits or extrinsic sensorimotor feedback loops. Here we show that the interplay of both intrinsic and extrinsic dynamics is required to explain the intermittency observed in continuous tracking movements. Using spatiotemporal perturbations in humans, we demonstrate that apparently discrete submovements made 2-3 times per second reflect constructive interference between motor errors and continuous feedback corrections that are filtered by intrinsic circuitry in the motor system. Local field potentials in monkey motor cortex revealed characteristic signatures of a Kalman filter, giving rise to both low-frequency cortical cycles during movement, and delta oscillations during sleep. We interpret these results within the framework of optimal feedback control, and suggest that the intrinsic rhythmicity of motor cortical networks reflects an internal model of external dynamics, which is used for state estimation during feedback-guided movement.</abstract><pub>Dryad</pub><doi>10.5061/dryad.53sq7kn</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5061/dryad.53sq7kn
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5061_dryad_53sq7kn
source DataCite
subjects Homo Sapiens
Macaca mulatta
Motor cortex
movement intermittency
optimal feedback control
Submovements
title Data from: Extrinsic and intrinsic dynamics in movement intermittency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Susilaradeya,%20Damar&rft.date=2019-04-11&rft_id=info:doi/10.5061/dryad.53sq7kn&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_53sq7kn%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true