Data from: Estimating mobile traffic demand using Twitter
In this letter, the authors show that structured social media data can act as an accurate predictor for wireless data demand patterns at a high spatial-temporal resolution. A casestudy is performed on Greater London covering a 5000 km2 area. The data used includes over 0.6 million geo-tagged Twitter...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Yang, Bowei Guo, Weisi Chen, Bozhong Yang, Guangpu Zhang, Jie |
description | In this letter, the authors show that structured social media data can act
as an accurate predictor for wireless data demand patterns at a high
spatial-temporal resolution. A casestudy is performed on Greater London
covering a 5000 km2 area. The data used includes over 0.6 million
geo-tagged Twitter data, over 1 million mobile phone data demand records,
and U.K. census data. The analysis shows that social media activity
(Tweets/s n) can accurately predict the long-term traffic demand for both
the uplink and downlink channels. The relationship between social media
activity and traffic demand obeys a power law and the model explains for
over 71%-79% of the variance in real traffic demand. This is a significant
improvement over existing methods of long-term traffic prediction such as
census population data (R2 = 0.57). The authors also show that social
media data can also forward predict short-term traffic demand for up to 2
h on the same day and for the same time in the following 2-3 days. |
doi_str_mv | 10.5061/dryad.35m1f4q |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_35m1f4q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_35m1f4q</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_35m1f4q3</originalsourceid><addsrcrecordid>eNpjYBA1NNAzNTAz1E8pqkxM0TM2zTVMMynkZLB0SSxJVEgrys-1UnAtLsnMTSzJzEtXyM1PysxJVSgpSkxLy0xWSEnNTcxLUSgtBsmFlGeWlKQW8TCwpiXmFKfyQmluBl031xBnD90UoInJmSWp8QVFQOOKKuMNDeJBVseDrY6HWm1MqnoAhHc-iA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Data from: Estimating mobile traffic demand using Twitter</title><source>DataCite</source><creator>Yang, Bowei ; Guo, Weisi ; Chen, Bozhong ; Yang, Guangpu ; Zhang, Jie</creator><creatorcontrib>Yang, Bowei ; Guo, Weisi ; Chen, Bozhong ; Yang, Guangpu ; Zhang, Jie</creatorcontrib><description>In this letter, the authors show that structured social media data can act
as an accurate predictor for wireless data demand patterns at a high
spatial-temporal resolution. A casestudy is performed on Greater London
covering a 5000 km2 area. The data used includes over 0.6 million
geo-tagged Twitter data, over 1 million mobile phone data demand records,
and U.K. census data. The analysis shows that social media activity
(Tweets/s n) can accurately predict the long-term traffic demand for both
the uplink and downlink channels. The relationship between social media
activity and traffic demand obeys a power law and the model explains for
over 71%-79% of the variance in real traffic demand. This is a significant
improvement over existing methods of long-term traffic prediction such as
census population data (R2 = 0.57). The authors also show that social
media data can also forward predict short-term traffic demand for up to 2
h on the same day and for the same time in the following 2-3 days.</description><identifier>DOI: 10.5061/dryad.35m1f4q</identifier><language>eng</language><publisher>Dryad</publisher><subject>traffic ; Twitter</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.35m1f4q$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yang, Bowei</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Chen, Bozhong</creatorcontrib><creatorcontrib>Yang, Guangpu</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><title>Data from: Estimating mobile traffic demand using Twitter</title><description>In this letter, the authors show that structured social media data can act
as an accurate predictor for wireless data demand patterns at a high
spatial-temporal resolution. A casestudy is performed on Greater London
covering a 5000 km2 area. The data used includes over 0.6 million
geo-tagged Twitter data, over 1 million mobile phone data demand records,
and U.K. census data. The analysis shows that social media activity
(Tweets/s n) can accurately predict the long-term traffic demand for both
the uplink and downlink channels. The relationship between social media
activity and traffic demand obeys a power law and the model explains for
over 71%-79% of the variance in real traffic demand. This is a significant
improvement over existing methods of long-term traffic prediction such as
census population data (R2 = 0.57). The authors also show that social
media data can also forward predict short-term traffic demand for up to 2
h on the same day and for the same time in the following 2-3 days.</description><subject>traffic</subject><subject>Twitter</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2018</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA1NNAzNTAz1E8pqkxM0TM2zTVMMynkZLB0SSxJVEgrys-1UnAtLsnMTSzJzEtXyM1PysxJVSgpSkxLy0xWSEnNTcxLUSgtBsmFlGeWlKQW8TCwpiXmFKfyQmluBl031xBnD90UoInJmSWp8QVFQOOKKuMNDeJBVseDrY6HWm1MqnoAhHc-iA</recordid><startdate>20181127</startdate><enddate>20181127</enddate><creator>Yang, Bowei</creator><creator>Guo, Weisi</creator><creator>Chen, Bozhong</creator><creator>Yang, Guangpu</creator><creator>Zhang, Jie</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20181127</creationdate><title>Data from: Estimating mobile traffic demand using Twitter</title><author>Yang, Bowei ; Guo, Weisi ; Chen, Bozhong ; Yang, Guangpu ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_35m1f4q3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2018</creationdate><topic>traffic</topic><topic>Twitter</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Bowei</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Chen, Bozhong</creatorcontrib><creatorcontrib>Yang, Guangpu</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Bowei</au><au>Guo, Weisi</au><au>Chen, Bozhong</au><au>Yang, Guangpu</au><au>Zhang, Jie</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Data from: Estimating mobile traffic demand using Twitter</title><date>2018-11-27</date><risdate>2018</risdate><abstract>In this letter, the authors show that structured social media data can act
as an accurate predictor for wireless data demand patterns at a high
spatial-temporal resolution. A casestudy is performed on Greater London
covering a 5000 km2 area. The data used includes over 0.6 million
geo-tagged Twitter data, over 1 million mobile phone data demand records,
and U.K. census data. The analysis shows that social media activity
(Tweets/s n) can accurately predict the long-term traffic demand for both
the uplink and downlink channels. The relationship between social media
activity and traffic demand obeys a power law and the model explains for
over 71%-79% of the variance in real traffic demand. This is a significant
improvement over existing methods of long-term traffic prediction such as
census population data (R2 = 0.57). The authors also show that social
media data can also forward predict short-term traffic demand for up to 2
h on the same day and for the same time in the following 2-3 days.</abstract><pub>Dryad</pub><doi>10.5061/dryad.35m1f4q</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.5061/dryad.35m1f4q |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_5061_dryad_35m1f4q |
source | DataCite |
subjects | traffic |
title | Data from: Estimating mobile traffic demand using Twitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Yang,%20Bowei&rft.date=2018-11-27&rft_id=info:doi/10.5061/dryad.35m1f4q&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_35m1f4q%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |