Data from: Estimating mobile traffic demand using Twitter

In this letter, the authors show that structured social media data can act as an accurate predictor for wireless data demand patterns at a high spatial-temporal resolution. A casestudy is performed on Greater London covering a 5000 km2 area. The data used includes over 0.6 million geo-tagged Twitter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang, Bowei, Guo, Weisi, Chen, Bozhong, Yang, Guangpu, Zhang, Jie
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yang, Bowei
Guo, Weisi
Chen, Bozhong
Yang, Guangpu
Zhang, Jie
description In this letter, the authors show that structured social media data can act as an accurate predictor for wireless data demand patterns at a high spatial-temporal resolution. A casestudy is performed on Greater London covering a 5000 km2 area. The data used includes over 0.6 million geo-tagged Twitter data, over 1 million mobile phone data demand records, and U.K. census data. The analysis shows that social media activity (Tweets/s n) can accurately predict the long-term traffic demand for both the uplink and downlink channels. The relationship between social media activity and traffic demand obeys a power law and the model explains for over 71%-79% of the variance in real traffic demand. This is a significant improvement over existing methods of long-term traffic prediction such as census population data (R2 = 0.57). The authors also show that social media data can also forward predict short-term traffic demand for up to 2 h on the same day and for the same time in the following 2-3 days.
doi_str_mv 10.5061/dryad.35m1f4q
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_35m1f4q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_35m1f4q</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_35m1f4q3</originalsourceid><addsrcrecordid>eNpjYBA1NNAzNTAz1E8pqkxM0TM2zTVMMynkZLB0SSxJVEgrys-1UnAtLsnMTSzJzEtXyM1PysxJVSgpSkxLy0xWSEnNTcxLUSgtBsmFlGeWlKQW8TCwpiXmFKfyQmluBl031xBnD90UoInJmSWp8QVFQOOKKuMNDeJBVseDrY6HWm1MqnoAhHc-iA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Data from: Estimating mobile traffic demand using Twitter</title><source>DataCite</source><creator>Yang, Bowei ; Guo, Weisi ; Chen, Bozhong ; Yang, Guangpu ; Zhang, Jie</creator><creatorcontrib>Yang, Bowei ; Guo, Weisi ; Chen, Bozhong ; Yang, Guangpu ; Zhang, Jie</creatorcontrib><description>In this letter, the authors show that structured social media data can act as an accurate predictor for wireless data demand patterns at a high spatial-temporal resolution. A casestudy is performed on Greater London covering a 5000 km2 area. The data used includes over 0.6 million geo-tagged Twitter data, over 1 million mobile phone data demand records, and U.K. census data. The analysis shows that social media activity (Tweets/s n) can accurately predict the long-term traffic demand for both the uplink and downlink channels. The relationship between social media activity and traffic demand obeys a power law and the model explains for over 71%-79% of the variance in real traffic demand. This is a significant improvement over existing methods of long-term traffic prediction such as census population data (R2 = 0.57). The authors also show that social media data can also forward predict short-term traffic demand for up to 2 h on the same day and for the same time in the following 2-3 days.</description><identifier>DOI: 10.5061/dryad.35m1f4q</identifier><language>eng</language><publisher>Dryad</publisher><subject>traffic ; Twitter</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.35m1f4q$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yang, Bowei</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Chen, Bozhong</creatorcontrib><creatorcontrib>Yang, Guangpu</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><title>Data from: Estimating mobile traffic demand using Twitter</title><description>In this letter, the authors show that structured social media data can act as an accurate predictor for wireless data demand patterns at a high spatial-temporal resolution. A casestudy is performed on Greater London covering a 5000 km2 area. The data used includes over 0.6 million geo-tagged Twitter data, over 1 million mobile phone data demand records, and U.K. census data. The analysis shows that social media activity (Tweets/s n) can accurately predict the long-term traffic demand for both the uplink and downlink channels. The relationship between social media activity and traffic demand obeys a power law and the model explains for over 71%-79% of the variance in real traffic demand. This is a significant improvement over existing methods of long-term traffic prediction such as census population data (R2 = 0.57). The authors also show that social media data can also forward predict short-term traffic demand for up to 2 h on the same day and for the same time in the following 2-3 days.</description><subject>traffic</subject><subject>Twitter</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2018</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBA1NNAzNTAz1E8pqkxM0TM2zTVMMynkZLB0SSxJVEgrys-1UnAtLsnMTSzJzEtXyM1PysxJVSgpSkxLy0xWSEnNTcxLUSgtBsmFlGeWlKQW8TCwpiXmFKfyQmluBl031xBnD90UoInJmSWp8QVFQOOKKuMNDeJBVseDrY6HWm1MqnoAhHc-iA</recordid><startdate>20181127</startdate><enddate>20181127</enddate><creator>Yang, Bowei</creator><creator>Guo, Weisi</creator><creator>Chen, Bozhong</creator><creator>Yang, Guangpu</creator><creator>Zhang, Jie</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20181127</creationdate><title>Data from: Estimating mobile traffic demand using Twitter</title><author>Yang, Bowei ; Guo, Weisi ; Chen, Bozhong ; Yang, Guangpu ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_35m1f4q3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2018</creationdate><topic>traffic</topic><topic>Twitter</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Bowei</creatorcontrib><creatorcontrib>Guo, Weisi</creatorcontrib><creatorcontrib>Chen, Bozhong</creatorcontrib><creatorcontrib>Yang, Guangpu</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Bowei</au><au>Guo, Weisi</au><au>Chen, Bozhong</au><au>Yang, Guangpu</au><au>Zhang, Jie</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Data from: Estimating mobile traffic demand using Twitter</title><date>2018-11-27</date><risdate>2018</risdate><abstract>In this letter, the authors show that structured social media data can act as an accurate predictor for wireless data demand patterns at a high spatial-temporal resolution. A casestudy is performed on Greater London covering a 5000 km2 area. The data used includes over 0.6 million geo-tagged Twitter data, over 1 million mobile phone data demand records, and U.K. census data. The analysis shows that social media activity (Tweets/s n) can accurately predict the long-term traffic demand for both the uplink and downlink channels. The relationship between social media activity and traffic demand obeys a power law and the model explains for over 71%-79% of the variance in real traffic demand. This is a significant improvement over existing methods of long-term traffic prediction such as census population data (R2 = 0.57). The authors also show that social media data can also forward predict short-term traffic demand for up to 2 h on the same day and for the same time in the following 2-3 days.</abstract><pub>Dryad</pub><doi>10.5061/dryad.35m1f4q</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5061/dryad.35m1f4q
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5061_dryad_35m1f4q
source DataCite
subjects traffic
Twitter
title Data from: Estimating mobile traffic demand using Twitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Yang,%20Bowei&rft.date=2018-11-27&rft_id=info:doi/10.5061/dryad.35m1f4q&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_35m1f4q%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true