Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts
When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adap...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Paleo-López, Rocío Quintero-Galvis, Julian Fernando Solano-Iguaran, Jaiber J. Sanchez-Salazar, Angela M. Gaitán-Espitia, Juan Diego Nespolo, Roberto F. Gaitan-Espitia, Juan D. |
description | When novel sources of ecological opportunity are available, physiological
innovations can trigger adaptive radiations. This could be the case of
yeasts (Saccharomycotina), in which an evolutionary novelty is represented
by the capacity to exploit simple sugars from fruits (fermentation).
During adaptive radiations, diversification and morphological evolution
are predicted to slow-down after early bursts of diversification. Here, we
performed the first comparative phylogenetic analysis in yeasts, testing
the “early burst” prediction on species diversification and also on traits
of putative ecological relevance (cell-size and fermentation versatility).
We found that speciation rates are constant during the time-range we
considered (ca., 150 millions of years). Phylogenetic signal of both
traits was significant (but lower for cell-size), suggesting that lineages
resemble each other in trait-values. Disparity analysis suggested
accelerated evolution (diversification in trait values above Brownian
Motion expectations) in cell-size. We also found a significant
phylogenetic regression between cell-size and fermentation versatility (R2
= 0.10), which suggests correlated evolution between both traits. Overall,
our results do not support the early burst prediction both in species and
traits, but suggest a number of interesting evolutionary patterns, that
warrant further exploration. For instance, we show that the Whole Genomic
Duplication that affected a whole clade of yeasts, does not seems to have
a statistically detectable phenotypic effect at our level of analysis. In
this regard, further studies of fermentation under common-garden
conditions combined with comparative analyses are warranted. |
doi_str_mv | 10.5061/dryad.2hf06 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_2hf06</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_2hf06</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_2hf063</originalsourceid><addsrcrecordid>eNqVzr0KwjAUBeAsDqJOvsDdxZpa7OAm_uADCI7h0t7YQH5Kci3k7a3FF3A6y-GcT4h1KYuDrMtdGzO2xb7Tsp6L5wUZQcfgjnCCvss2vMgTmwbQo83JJAgaHDYx0BDsm03wGDP0yEzRJzAeNEVHnpHNQJAJE6elmGm0iVa_XIjN7fo437ft-NcYJtVH48YhVUr1ZamJpSZW9V_7AyXaSMQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts</title><source>DataCite</source><creator>Paleo-López, Rocío ; Quintero-Galvis, Julian Fernando ; Solano-Iguaran, Jaiber J. ; Sanchez-Salazar, Angela M. ; Gaitán-Espitia, Juan Diego ; Nespolo, Roberto F. ; Gaitan-Espitia, Juan D.</creator><creatorcontrib>Paleo-López, Rocío ; Quintero-Galvis, Julian Fernando ; Solano-Iguaran, Jaiber J. ; Sanchez-Salazar, Angela M. ; Gaitán-Espitia, Juan Diego ; Nespolo, Roberto F. ; Gaitan-Espitia, Juan D.</creatorcontrib><description>When novel sources of ecological opportunity are available, physiological
innovations can trigger adaptive radiations. This could be the case of
yeasts (Saccharomycotina), in which an evolutionary novelty is represented
by the capacity to exploit simple sugars from fruits (fermentation).
During adaptive radiations, diversification and morphological evolution
are predicted to slow-down after early bursts of diversification. Here, we
performed the first comparative phylogenetic analysis in yeasts, testing
the “early burst” prediction on species diversification and also on traits
of putative ecological relevance (cell-size and fermentation versatility).
We found that speciation rates are constant during the time-range we
considered (ca., 150 millions of years). Phylogenetic signal of both
traits was significant (but lower for cell-size), suggesting that lineages
resemble each other in trait-values. Disparity analysis suggested
accelerated evolution (diversification in trait values above Brownian
Motion expectations) in cell-size. We also found a significant
phylogenetic regression between cell-size and fermentation versatility (R2
= 0.10), which suggests correlated evolution between both traits. Overall,
our results do not support the early burst prediction both in species and
traits, but suggest a number of interesting evolutionary patterns, that
warrant further exploration. For instance, we show that the Whole Genomic
Duplication that affected a whole clade of yeasts, does not seems to have
a statistically detectable phenotypic effect at our level of analysis. In
this regard, further studies of fermentation under common-garden
conditions combined with comparative analyses are warranted.</description><identifier>DOI: 10.5061/dryad.2hf06</identifier><language>eng</language><publisher>Dryad</publisher><subject>Candida castellii ; Candida glabrata ; Candida humilis ; comparative method ; Eremothecium ashbyi ; Eremothecium coryli ; Eremothecium cymbalariae ; Eremothecium gossypii ; Eremothecium sinecaudum ; Fermentation ; Hanseniaspora guilliermondii ; Hanseniaspora occidentalis ; Hanseniaspora osmophila ; Hanseniaspora uvarum ; Hanseniaspora valbyensis ; Hanseniaspora vineae ; Kazachstania africana ; Kazachstania barnettii ; Kazachstania bulderi ; Kazachstania exigua ; Kazachstania kunashirensis ; Kazachstania lodderae ; Kazachstania martiniae ; Kazachstania piceae ; Kazachstania rosinii ; Kazachstania servazzii ; Kazachstania sinensis ; Kazachstania spencerorum ; Kazachstania telluris ; Kazachstania transvaalensis ; Kazachstania turicensis ; Kazachstania unispora ; Kazachstania viticola ; Kloeckera lindneri ; Kluyveromyces aestuarii ; Kluyveromyces dobzhanskii ; Kluyveromyces lactis ; Kluyveromyces marxianus ; Kluyveromyces nonfermentans ; Kluyveromyces wickerhamii ; Lachancea cidri ; Lachancea fermentati ; Lachancea kluyveri ; Lachancea thermotolerans ; Lachancea waltii ; Nakaseomyces bacillisporus ; Nakaseomyces delphensis ; Naumovozyma castellii ; Naumovozyma dairenensis ; Saccharomicotina ; Saccharomyces bayanus ; Saccharomyces cariocanus ; Saccharomyces kudriavzevii ; Saccharomyces mikatae ; Saccharomyces paradoxus ; Saccharomyces pastorianus ; Saccharomycodes ludwigii ; Schizosaccharomyces pombe ; Tetrapisispora arboricola ; Tetrapisispora blattae ; Tetrapisispora iriomotensis ; Tetrapisispora nanseiensis ; Tetrapisispora phaffii ; Torulaspora delbrueckii ; Torulaspora franciscae ; Torulaspora globosa ; Torulaspora microellipsoides ; Torulaspora pretoriensis ; Vanderwaltozyma polyspora ; Vanderwaltozyma yarrowii ; Wickerhamomyces anomalus ; Zygosaccharomyces bailii ; Zygosaccharomyces bisporus ; Zygosaccharomyces kombuchaensis ; Zygosaccharomyces lentus ; Zygosaccharomyces mellis ; Zygosaccharomyces rouxii ; Zygotorulaspora florentina ; Zygotorulaspora mrakii</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.2hf06$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Paleo-López, Rocío</creatorcontrib><creatorcontrib>Quintero-Galvis, Julian Fernando</creatorcontrib><creatorcontrib>Solano-Iguaran, Jaiber J.</creatorcontrib><creatorcontrib>Sanchez-Salazar, Angela M.</creatorcontrib><creatorcontrib>Gaitán-Espitia, Juan Diego</creatorcontrib><creatorcontrib>Nespolo, Roberto F.</creatorcontrib><creatorcontrib>Gaitan-Espitia, Juan D.</creatorcontrib><title>Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts</title><description>When novel sources of ecological opportunity are available, physiological
innovations can trigger adaptive radiations. This could be the case of
yeasts (Saccharomycotina), in which an evolutionary novelty is represented
by the capacity to exploit simple sugars from fruits (fermentation).
During adaptive radiations, diversification and morphological evolution
are predicted to slow-down after early bursts of diversification. Here, we
performed the first comparative phylogenetic analysis in yeasts, testing
the “early burst” prediction on species diversification and also on traits
of putative ecological relevance (cell-size and fermentation versatility).
We found that speciation rates are constant during the time-range we
considered (ca., 150 millions of years). Phylogenetic signal of both
traits was significant (but lower for cell-size), suggesting that lineages
resemble each other in trait-values. Disparity analysis suggested
accelerated evolution (diversification in trait values above Brownian
Motion expectations) in cell-size. We also found a significant
phylogenetic regression between cell-size and fermentation versatility (R2
= 0.10), which suggests correlated evolution between both traits. Overall,
our results do not support the early burst prediction both in species and
traits, but suggest a number of interesting evolutionary patterns, that
warrant further exploration. For instance, we show that the Whole Genomic
Duplication that affected a whole clade of yeasts, does not seems to have
a statistically detectable phenotypic effect at our level of analysis. In
this regard, further studies of fermentation under common-garden
conditions combined with comparative analyses are warranted.</description><subject>Candida castellii</subject><subject>Candida glabrata</subject><subject>Candida humilis</subject><subject>comparative method</subject><subject>Eremothecium ashbyi</subject><subject>Eremothecium coryli</subject><subject>Eremothecium cymbalariae</subject><subject>Eremothecium gossypii</subject><subject>Eremothecium sinecaudum</subject><subject>Fermentation</subject><subject>Hanseniaspora guilliermondii</subject><subject>Hanseniaspora occidentalis</subject><subject>Hanseniaspora osmophila</subject><subject>Hanseniaspora uvarum</subject><subject>Hanseniaspora valbyensis</subject><subject>Hanseniaspora vineae</subject><subject>Kazachstania africana</subject><subject>Kazachstania barnettii</subject><subject>Kazachstania bulderi</subject><subject>Kazachstania exigua</subject><subject>Kazachstania kunashirensis</subject><subject>Kazachstania lodderae</subject><subject>Kazachstania martiniae</subject><subject>Kazachstania piceae</subject><subject>Kazachstania rosinii</subject><subject>Kazachstania servazzii</subject><subject>Kazachstania sinensis</subject><subject>Kazachstania spencerorum</subject><subject>Kazachstania telluris</subject><subject>Kazachstania transvaalensis</subject><subject>Kazachstania turicensis</subject><subject>Kazachstania unispora</subject><subject>Kazachstania viticola</subject><subject>Kloeckera lindneri</subject><subject>Kluyveromyces aestuarii</subject><subject>Kluyveromyces dobzhanskii</subject><subject>Kluyveromyces lactis</subject><subject>Kluyveromyces marxianus</subject><subject>Kluyveromyces nonfermentans</subject><subject>Kluyveromyces wickerhamii</subject><subject>Lachancea cidri</subject><subject>Lachancea fermentati</subject><subject>Lachancea kluyveri</subject><subject>Lachancea thermotolerans</subject><subject>Lachancea waltii</subject><subject>Nakaseomyces bacillisporus</subject><subject>Nakaseomyces delphensis</subject><subject>Naumovozyma castellii</subject><subject>Naumovozyma dairenensis</subject><subject>Saccharomicotina</subject><subject>Saccharomyces bayanus</subject><subject>Saccharomyces cariocanus</subject><subject>Saccharomyces kudriavzevii</subject><subject>Saccharomyces mikatae</subject><subject>Saccharomyces paradoxus</subject><subject>Saccharomyces pastorianus</subject><subject>Saccharomycodes ludwigii</subject><subject>Schizosaccharomyces pombe</subject><subject>Tetrapisispora arboricola</subject><subject>Tetrapisispora blattae</subject><subject>Tetrapisispora iriomotensis</subject><subject>Tetrapisispora nanseiensis</subject><subject>Tetrapisispora phaffii</subject><subject>Torulaspora delbrueckii</subject><subject>Torulaspora franciscae</subject><subject>Torulaspora globosa</subject><subject>Torulaspora microellipsoides</subject><subject>Torulaspora pretoriensis</subject><subject>Vanderwaltozyma polyspora</subject><subject>Vanderwaltozyma yarrowii</subject><subject>Wickerhamomyces anomalus</subject><subject>Zygosaccharomyces bailii</subject><subject>Zygosaccharomyces bisporus</subject><subject>Zygosaccharomyces kombuchaensis</subject><subject>Zygosaccharomyces lentus</subject><subject>Zygosaccharomyces mellis</subject><subject>Zygosaccharomyces rouxii</subject><subject>Zygotorulaspora florentina</subject><subject>Zygotorulaspora mrakii</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2017</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVzr0KwjAUBeAsDqJOvsDdxZpa7OAm_uADCI7h0t7YQH5Kci3k7a3FF3A6y-GcT4h1KYuDrMtdGzO2xb7Tsp6L5wUZQcfgjnCCvss2vMgTmwbQo83JJAgaHDYx0BDsm03wGDP0yEzRJzAeNEVHnpHNQJAJE6elmGm0iVa_XIjN7fo437ft-NcYJtVH48YhVUr1ZamJpSZW9V_7AyXaSMQ</recordid><startdate>20170317</startdate><enddate>20170317</enddate><creator>Paleo-López, Rocío</creator><creator>Quintero-Galvis, Julian Fernando</creator><creator>Solano-Iguaran, Jaiber J.</creator><creator>Sanchez-Salazar, Angela M.</creator><creator>Gaitán-Espitia, Juan Diego</creator><creator>Nespolo, Roberto F.</creator><creator>Gaitan-Espitia, Juan D.</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20170317</creationdate><title>Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts</title><author>Paleo-López, Rocío ; Quintero-Galvis, Julian Fernando ; Solano-Iguaran, Jaiber J. ; Sanchez-Salazar, Angela M. ; Gaitán-Espitia, Juan Diego ; Nespolo, Roberto F. ; Gaitan-Espitia, Juan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_2hf063</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Candida castellii</topic><topic>Candida glabrata</topic><topic>Candida humilis</topic><topic>comparative method</topic><topic>Eremothecium ashbyi</topic><topic>Eremothecium coryli</topic><topic>Eremothecium cymbalariae</topic><topic>Eremothecium gossypii</topic><topic>Eremothecium sinecaudum</topic><topic>Fermentation</topic><topic>Hanseniaspora guilliermondii</topic><topic>Hanseniaspora occidentalis</topic><topic>Hanseniaspora osmophila</topic><topic>Hanseniaspora uvarum</topic><topic>Hanseniaspora valbyensis</topic><topic>Hanseniaspora vineae</topic><topic>Kazachstania africana</topic><topic>Kazachstania barnettii</topic><topic>Kazachstania bulderi</topic><topic>Kazachstania exigua</topic><topic>Kazachstania kunashirensis</topic><topic>Kazachstania lodderae</topic><topic>Kazachstania martiniae</topic><topic>Kazachstania piceae</topic><topic>Kazachstania rosinii</topic><topic>Kazachstania servazzii</topic><topic>Kazachstania sinensis</topic><topic>Kazachstania spencerorum</topic><topic>Kazachstania telluris</topic><topic>Kazachstania transvaalensis</topic><topic>Kazachstania turicensis</topic><topic>Kazachstania unispora</topic><topic>Kazachstania viticola</topic><topic>Kloeckera lindneri</topic><topic>Kluyveromyces aestuarii</topic><topic>Kluyveromyces dobzhanskii</topic><topic>Kluyveromyces lactis</topic><topic>Kluyveromyces marxianus</topic><topic>Kluyveromyces nonfermentans</topic><topic>Kluyveromyces wickerhamii</topic><topic>Lachancea cidri</topic><topic>Lachancea fermentati</topic><topic>Lachancea kluyveri</topic><topic>Lachancea thermotolerans</topic><topic>Lachancea waltii</topic><topic>Nakaseomyces bacillisporus</topic><topic>Nakaseomyces delphensis</topic><topic>Naumovozyma castellii</topic><topic>Naumovozyma dairenensis</topic><topic>Saccharomicotina</topic><topic>Saccharomyces bayanus</topic><topic>Saccharomyces cariocanus</topic><topic>Saccharomyces kudriavzevii</topic><topic>Saccharomyces mikatae</topic><topic>Saccharomyces paradoxus</topic><topic>Saccharomyces pastorianus</topic><topic>Saccharomycodes ludwigii</topic><topic>Schizosaccharomyces pombe</topic><topic>Tetrapisispora arboricola</topic><topic>Tetrapisispora blattae</topic><topic>Tetrapisispora iriomotensis</topic><topic>Tetrapisispora nanseiensis</topic><topic>Tetrapisispora phaffii</topic><topic>Torulaspora delbrueckii</topic><topic>Torulaspora franciscae</topic><topic>Torulaspora globosa</topic><topic>Torulaspora microellipsoides</topic><topic>Torulaspora pretoriensis</topic><topic>Vanderwaltozyma polyspora</topic><topic>Vanderwaltozyma yarrowii</topic><topic>Wickerhamomyces anomalus</topic><topic>Zygosaccharomyces bailii</topic><topic>Zygosaccharomyces bisporus</topic><topic>Zygosaccharomyces kombuchaensis</topic><topic>Zygosaccharomyces lentus</topic><topic>Zygosaccharomyces mellis</topic><topic>Zygosaccharomyces rouxii</topic><topic>Zygotorulaspora florentina</topic><topic>Zygotorulaspora mrakii</topic><toplevel>online_resources</toplevel><creatorcontrib>Paleo-López, Rocío</creatorcontrib><creatorcontrib>Quintero-Galvis, Julian Fernando</creatorcontrib><creatorcontrib>Solano-Iguaran, Jaiber J.</creatorcontrib><creatorcontrib>Sanchez-Salazar, Angela M.</creatorcontrib><creatorcontrib>Gaitán-Espitia, Juan Diego</creatorcontrib><creatorcontrib>Nespolo, Roberto F.</creatorcontrib><creatorcontrib>Gaitan-Espitia, Juan D.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paleo-López, Rocío</au><au>Quintero-Galvis, Julian Fernando</au><au>Solano-Iguaran, Jaiber J.</au><au>Sanchez-Salazar, Angela M.</au><au>Gaitán-Espitia, Juan Diego</au><au>Nespolo, Roberto F.</au><au>Gaitan-Espitia, Juan D.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts</title><date>2017-03-17</date><risdate>2017</risdate><abstract>When novel sources of ecological opportunity are available, physiological
innovations can trigger adaptive radiations. This could be the case of
yeasts (Saccharomycotina), in which an evolutionary novelty is represented
by the capacity to exploit simple sugars from fruits (fermentation).
During adaptive radiations, diversification and morphological evolution
are predicted to slow-down after early bursts of diversification. Here, we
performed the first comparative phylogenetic analysis in yeasts, testing
the “early burst” prediction on species diversification and also on traits
of putative ecological relevance (cell-size and fermentation versatility).
We found that speciation rates are constant during the time-range we
considered (ca., 150 millions of years). Phylogenetic signal of both
traits was significant (but lower for cell-size), suggesting that lineages
resemble each other in trait-values. Disparity analysis suggested
accelerated evolution (diversification in trait values above Brownian
Motion expectations) in cell-size. We also found a significant
phylogenetic regression between cell-size and fermentation versatility (R2
= 0.10), which suggests correlated evolution between both traits. Overall,
our results do not support the early burst prediction both in species and
traits, but suggest a number of interesting evolutionary patterns, that
warrant further exploration. For instance, we show that the Whole Genomic
Duplication that affected a whole clade of yeasts, does not seems to have
a statistically detectable phenotypic effect at our level of analysis. In
this regard, further studies of fermentation under common-garden
conditions combined with comparative analyses are warranted.</abstract><pub>Dryad</pub><doi>10.5061/dryad.2hf06</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.5061/dryad.2hf06 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_5061_dryad_2hf06 |
source | DataCite |
subjects | Candida castellii Candida glabrata Candida humilis comparative method Eremothecium ashbyi Eremothecium coryli Eremothecium cymbalariae Eremothecium gossypii Eremothecium sinecaudum Fermentation Hanseniaspora guilliermondii Hanseniaspora occidentalis Hanseniaspora osmophila Hanseniaspora uvarum Hanseniaspora valbyensis Hanseniaspora vineae Kazachstania africana Kazachstania barnettii Kazachstania bulderi Kazachstania exigua Kazachstania kunashirensis Kazachstania lodderae Kazachstania martiniae Kazachstania piceae Kazachstania rosinii Kazachstania servazzii Kazachstania sinensis Kazachstania spencerorum Kazachstania telluris Kazachstania transvaalensis Kazachstania turicensis Kazachstania unispora Kazachstania viticola Kloeckera lindneri Kluyveromyces aestuarii Kluyveromyces dobzhanskii Kluyveromyces lactis Kluyveromyces marxianus Kluyveromyces nonfermentans Kluyveromyces wickerhamii Lachancea cidri Lachancea fermentati Lachancea kluyveri Lachancea thermotolerans Lachancea waltii Nakaseomyces bacillisporus Nakaseomyces delphensis Naumovozyma castellii Naumovozyma dairenensis Saccharomicotina Saccharomyces bayanus Saccharomyces cariocanus Saccharomyces kudriavzevii Saccharomyces mikatae Saccharomyces paradoxus Saccharomyces pastorianus Saccharomycodes ludwigii Schizosaccharomyces pombe Tetrapisispora arboricola Tetrapisispora blattae Tetrapisispora iriomotensis Tetrapisispora nanseiensis Tetrapisispora phaffii Torulaspora delbrueckii Torulaspora franciscae Torulaspora globosa Torulaspora microellipsoides Torulaspora pretoriensis Vanderwaltozyma polyspora Vanderwaltozyma yarrowii Wickerhamomyces anomalus Zygosaccharomyces bailii Zygosaccharomyces bisporus Zygosaccharomyces kombuchaensis Zygosaccharomyces lentus Zygosaccharomyces mellis Zygosaccharomyces rouxii Zygotorulaspora florentina Zygotorulaspora mrakii |
title | Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Paleo-L%C3%B3pez,%20Roc%C3%ADo&rft.date=2017-03-17&rft_id=info:doi/10.5061/dryad.2hf06&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_2hf06%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |