Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts

When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Paleo-López, Rocío, Quintero-Galvis, Julian Fernando, Solano-Iguaran, Jaiber J., Sanchez-Salazar, Angela M., Gaitán-Espitia, Juan Diego, Nespolo, Roberto F., Gaitan-Espitia, Juan D.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Paleo-López, Rocío
Quintero-Galvis, Julian Fernando
Solano-Iguaran, Jaiber J.
Sanchez-Salazar, Angela M.
Gaitán-Espitia, Juan Diego
Nespolo, Roberto F.
Gaitan-Espitia, Juan D.
description When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow-down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell-size and fermentation versatility). We found that speciation rates are constant during the time-range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell-size), suggesting that lineages resemble each other in trait-values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell-size. We also found a significant phylogenetic regression between cell-size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common-garden conditions combined with comparative analyses are warranted.
doi_str_mv 10.5061/dryad.2hf06
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_5061_dryad_2hf06</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5061_dryad_2hf06</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_5061_dryad_2hf063</originalsourceid><addsrcrecordid>eNqVzr0KwjAUBeAsDqJOvsDdxZpa7OAm_uADCI7h0t7YQH5Kci3k7a3FF3A6y-GcT4h1KYuDrMtdGzO2xb7Tsp6L5wUZQcfgjnCCvss2vMgTmwbQo83JJAgaHDYx0BDsm03wGDP0yEzRJzAeNEVHnpHNQJAJE6elmGm0iVa_XIjN7fo437ft-NcYJtVH48YhVUr1ZamJpSZW9V_7AyXaSMQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts</title><source>DataCite</source><creator>Paleo-López, Rocío ; Quintero-Galvis, Julian Fernando ; Solano-Iguaran, Jaiber J. ; Sanchez-Salazar, Angela M. ; Gaitán-Espitia, Juan Diego ; Nespolo, Roberto F. ; Gaitan-Espitia, Juan D.</creator><creatorcontrib>Paleo-López, Rocío ; Quintero-Galvis, Julian Fernando ; Solano-Iguaran, Jaiber J. ; Sanchez-Salazar, Angela M. ; Gaitán-Espitia, Juan Diego ; Nespolo, Roberto F. ; Gaitan-Espitia, Juan D.</creatorcontrib><description>When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow-down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell-size and fermentation versatility). We found that speciation rates are constant during the time-range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell-size), suggesting that lineages resemble each other in trait-values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell-size. We also found a significant phylogenetic regression between cell-size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common-garden conditions combined with comparative analyses are warranted.</description><identifier>DOI: 10.5061/dryad.2hf06</identifier><language>eng</language><publisher>Dryad</publisher><subject>Candida castellii ; Candida glabrata ; Candida humilis ; comparative method ; Eremothecium ashbyi ; Eremothecium coryli ; Eremothecium cymbalariae ; Eremothecium gossypii ; Eremothecium sinecaudum ; Fermentation ; Hanseniaspora guilliermondii ; Hanseniaspora occidentalis ; Hanseniaspora osmophila ; Hanseniaspora uvarum ; Hanseniaspora valbyensis ; Hanseniaspora vineae ; Kazachstania africana ; Kazachstania barnettii ; Kazachstania bulderi ; Kazachstania exigua ; Kazachstania kunashirensis ; Kazachstania lodderae ; Kazachstania martiniae ; Kazachstania piceae ; Kazachstania rosinii ; Kazachstania servazzii ; Kazachstania sinensis ; Kazachstania spencerorum ; Kazachstania telluris ; Kazachstania transvaalensis ; Kazachstania turicensis ; Kazachstania unispora ; Kazachstania viticola ; Kloeckera lindneri ; Kluyveromyces aestuarii ; Kluyveromyces dobzhanskii ; Kluyveromyces lactis ; Kluyveromyces marxianus ; Kluyveromyces nonfermentans ; Kluyveromyces wickerhamii ; Lachancea cidri ; Lachancea fermentati ; Lachancea kluyveri ; Lachancea thermotolerans ; Lachancea waltii ; Nakaseomyces bacillisporus ; Nakaseomyces delphensis ; Naumovozyma castellii ; Naumovozyma dairenensis ; Saccharomicotina ; Saccharomyces bayanus ; Saccharomyces cariocanus ; Saccharomyces kudriavzevii ; Saccharomyces mikatae ; Saccharomyces paradoxus ; Saccharomyces pastorianus ; Saccharomycodes ludwigii ; Schizosaccharomyces pombe ; Tetrapisispora arboricola ; Tetrapisispora blattae ; Tetrapisispora iriomotensis ; Tetrapisispora nanseiensis ; Tetrapisispora phaffii ; Torulaspora delbrueckii ; Torulaspora franciscae ; Torulaspora globosa ; Torulaspora microellipsoides ; Torulaspora pretoriensis ; Vanderwaltozyma polyspora ; Vanderwaltozyma yarrowii ; Wickerhamomyces anomalus ; Zygosaccharomyces bailii ; Zygosaccharomyces bisporus ; Zygosaccharomyces kombuchaensis ; Zygosaccharomyces lentus ; Zygosaccharomyces mellis ; Zygosaccharomyces rouxii ; Zygotorulaspora florentina ; Zygotorulaspora mrakii</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.5061/dryad.2hf06$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Paleo-López, Rocío</creatorcontrib><creatorcontrib>Quintero-Galvis, Julian Fernando</creatorcontrib><creatorcontrib>Solano-Iguaran, Jaiber J.</creatorcontrib><creatorcontrib>Sanchez-Salazar, Angela M.</creatorcontrib><creatorcontrib>Gaitán-Espitia, Juan Diego</creatorcontrib><creatorcontrib>Nespolo, Roberto F.</creatorcontrib><creatorcontrib>Gaitan-Espitia, Juan D.</creatorcontrib><title>Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts</title><description>When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow-down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell-size and fermentation versatility). We found that speciation rates are constant during the time-range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell-size), suggesting that lineages resemble each other in trait-values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell-size. We also found a significant phylogenetic regression between cell-size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common-garden conditions combined with comparative analyses are warranted.</description><subject>Candida castellii</subject><subject>Candida glabrata</subject><subject>Candida humilis</subject><subject>comparative method</subject><subject>Eremothecium ashbyi</subject><subject>Eremothecium coryli</subject><subject>Eremothecium cymbalariae</subject><subject>Eremothecium gossypii</subject><subject>Eremothecium sinecaudum</subject><subject>Fermentation</subject><subject>Hanseniaspora guilliermondii</subject><subject>Hanseniaspora occidentalis</subject><subject>Hanseniaspora osmophila</subject><subject>Hanseniaspora uvarum</subject><subject>Hanseniaspora valbyensis</subject><subject>Hanseniaspora vineae</subject><subject>Kazachstania africana</subject><subject>Kazachstania barnettii</subject><subject>Kazachstania bulderi</subject><subject>Kazachstania exigua</subject><subject>Kazachstania kunashirensis</subject><subject>Kazachstania lodderae</subject><subject>Kazachstania martiniae</subject><subject>Kazachstania piceae</subject><subject>Kazachstania rosinii</subject><subject>Kazachstania servazzii</subject><subject>Kazachstania sinensis</subject><subject>Kazachstania spencerorum</subject><subject>Kazachstania telluris</subject><subject>Kazachstania transvaalensis</subject><subject>Kazachstania turicensis</subject><subject>Kazachstania unispora</subject><subject>Kazachstania viticola</subject><subject>Kloeckera lindneri</subject><subject>Kluyveromyces aestuarii</subject><subject>Kluyveromyces dobzhanskii</subject><subject>Kluyveromyces lactis</subject><subject>Kluyveromyces marxianus</subject><subject>Kluyveromyces nonfermentans</subject><subject>Kluyveromyces wickerhamii</subject><subject>Lachancea cidri</subject><subject>Lachancea fermentati</subject><subject>Lachancea kluyveri</subject><subject>Lachancea thermotolerans</subject><subject>Lachancea waltii</subject><subject>Nakaseomyces bacillisporus</subject><subject>Nakaseomyces delphensis</subject><subject>Naumovozyma castellii</subject><subject>Naumovozyma dairenensis</subject><subject>Saccharomicotina</subject><subject>Saccharomyces bayanus</subject><subject>Saccharomyces cariocanus</subject><subject>Saccharomyces kudriavzevii</subject><subject>Saccharomyces mikatae</subject><subject>Saccharomyces paradoxus</subject><subject>Saccharomyces pastorianus</subject><subject>Saccharomycodes ludwigii</subject><subject>Schizosaccharomyces pombe</subject><subject>Tetrapisispora arboricola</subject><subject>Tetrapisispora blattae</subject><subject>Tetrapisispora iriomotensis</subject><subject>Tetrapisispora nanseiensis</subject><subject>Tetrapisispora phaffii</subject><subject>Torulaspora delbrueckii</subject><subject>Torulaspora franciscae</subject><subject>Torulaspora globosa</subject><subject>Torulaspora microellipsoides</subject><subject>Torulaspora pretoriensis</subject><subject>Vanderwaltozyma polyspora</subject><subject>Vanderwaltozyma yarrowii</subject><subject>Wickerhamomyces anomalus</subject><subject>Zygosaccharomyces bailii</subject><subject>Zygosaccharomyces bisporus</subject><subject>Zygosaccharomyces kombuchaensis</subject><subject>Zygosaccharomyces lentus</subject><subject>Zygosaccharomyces mellis</subject><subject>Zygosaccharomyces rouxii</subject><subject>Zygotorulaspora florentina</subject><subject>Zygotorulaspora mrakii</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2017</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVzr0KwjAUBeAsDqJOvsDdxZpa7OAm_uADCI7h0t7YQH5Kci3k7a3FF3A6y-GcT4h1KYuDrMtdGzO2xb7Tsp6L5wUZQcfgjnCCvss2vMgTmwbQo83JJAgaHDYx0BDsm03wGDP0yEzRJzAeNEVHnpHNQJAJE6elmGm0iVa_XIjN7fo437ft-NcYJtVH48YhVUr1ZamJpSZW9V_7AyXaSMQ</recordid><startdate>20170317</startdate><enddate>20170317</enddate><creator>Paleo-López, Rocío</creator><creator>Quintero-Galvis, Julian Fernando</creator><creator>Solano-Iguaran, Jaiber J.</creator><creator>Sanchez-Salazar, Angela M.</creator><creator>Gaitán-Espitia, Juan Diego</creator><creator>Nespolo, Roberto F.</creator><creator>Gaitan-Espitia, Juan D.</creator><general>Dryad</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20170317</creationdate><title>Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts</title><author>Paleo-López, Rocío ; Quintero-Galvis, Julian Fernando ; Solano-Iguaran, Jaiber J. ; Sanchez-Salazar, Angela M. ; Gaitán-Espitia, Juan Diego ; Nespolo, Roberto F. ; Gaitan-Espitia, Juan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_5061_dryad_2hf063</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Candida castellii</topic><topic>Candida glabrata</topic><topic>Candida humilis</topic><topic>comparative method</topic><topic>Eremothecium ashbyi</topic><topic>Eremothecium coryli</topic><topic>Eremothecium cymbalariae</topic><topic>Eremothecium gossypii</topic><topic>Eremothecium sinecaudum</topic><topic>Fermentation</topic><topic>Hanseniaspora guilliermondii</topic><topic>Hanseniaspora occidentalis</topic><topic>Hanseniaspora osmophila</topic><topic>Hanseniaspora uvarum</topic><topic>Hanseniaspora valbyensis</topic><topic>Hanseniaspora vineae</topic><topic>Kazachstania africana</topic><topic>Kazachstania barnettii</topic><topic>Kazachstania bulderi</topic><topic>Kazachstania exigua</topic><topic>Kazachstania kunashirensis</topic><topic>Kazachstania lodderae</topic><topic>Kazachstania martiniae</topic><topic>Kazachstania piceae</topic><topic>Kazachstania rosinii</topic><topic>Kazachstania servazzii</topic><topic>Kazachstania sinensis</topic><topic>Kazachstania spencerorum</topic><topic>Kazachstania telluris</topic><topic>Kazachstania transvaalensis</topic><topic>Kazachstania turicensis</topic><topic>Kazachstania unispora</topic><topic>Kazachstania viticola</topic><topic>Kloeckera lindneri</topic><topic>Kluyveromyces aestuarii</topic><topic>Kluyveromyces dobzhanskii</topic><topic>Kluyveromyces lactis</topic><topic>Kluyveromyces marxianus</topic><topic>Kluyveromyces nonfermentans</topic><topic>Kluyveromyces wickerhamii</topic><topic>Lachancea cidri</topic><topic>Lachancea fermentati</topic><topic>Lachancea kluyveri</topic><topic>Lachancea thermotolerans</topic><topic>Lachancea waltii</topic><topic>Nakaseomyces bacillisporus</topic><topic>Nakaseomyces delphensis</topic><topic>Naumovozyma castellii</topic><topic>Naumovozyma dairenensis</topic><topic>Saccharomicotina</topic><topic>Saccharomyces bayanus</topic><topic>Saccharomyces cariocanus</topic><topic>Saccharomyces kudriavzevii</topic><topic>Saccharomyces mikatae</topic><topic>Saccharomyces paradoxus</topic><topic>Saccharomyces pastorianus</topic><topic>Saccharomycodes ludwigii</topic><topic>Schizosaccharomyces pombe</topic><topic>Tetrapisispora arboricola</topic><topic>Tetrapisispora blattae</topic><topic>Tetrapisispora iriomotensis</topic><topic>Tetrapisispora nanseiensis</topic><topic>Tetrapisispora phaffii</topic><topic>Torulaspora delbrueckii</topic><topic>Torulaspora franciscae</topic><topic>Torulaspora globosa</topic><topic>Torulaspora microellipsoides</topic><topic>Torulaspora pretoriensis</topic><topic>Vanderwaltozyma polyspora</topic><topic>Vanderwaltozyma yarrowii</topic><topic>Wickerhamomyces anomalus</topic><topic>Zygosaccharomyces bailii</topic><topic>Zygosaccharomyces bisporus</topic><topic>Zygosaccharomyces kombuchaensis</topic><topic>Zygosaccharomyces lentus</topic><topic>Zygosaccharomyces mellis</topic><topic>Zygosaccharomyces rouxii</topic><topic>Zygotorulaspora florentina</topic><topic>Zygotorulaspora mrakii</topic><toplevel>online_resources</toplevel><creatorcontrib>Paleo-López, Rocío</creatorcontrib><creatorcontrib>Quintero-Galvis, Julian Fernando</creatorcontrib><creatorcontrib>Solano-Iguaran, Jaiber J.</creatorcontrib><creatorcontrib>Sanchez-Salazar, Angela M.</creatorcontrib><creatorcontrib>Gaitán-Espitia, Juan Diego</creatorcontrib><creatorcontrib>Nespolo, Roberto F.</creatorcontrib><creatorcontrib>Gaitan-Espitia, Juan D.</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paleo-López, Rocío</au><au>Quintero-Galvis, Julian Fernando</au><au>Solano-Iguaran, Jaiber J.</au><au>Sanchez-Salazar, Angela M.</au><au>Gaitán-Espitia, Juan Diego</au><au>Nespolo, Roberto F.</au><au>Gaitan-Espitia, Juan D.</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts</title><date>2017-03-17</date><risdate>2017</risdate><abstract>When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow-down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell-size and fermentation versatility). We found that speciation rates are constant during the time-range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell-size), suggesting that lineages resemble each other in trait-values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell-size. We also found a significant phylogenetic regression between cell-size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common-garden conditions combined with comparative analyses are warranted.</abstract><pub>Dryad</pub><doi>10.5061/dryad.2hf06</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5061/dryad.2hf06
ispartof
issn
language eng
recordid cdi_datacite_primary_10_5061_dryad_2hf06
source DataCite
subjects Candida castellii
Candida glabrata
Candida humilis
comparative method
Eremothecium ashbyi
Eremothecium coryli
Eremothecium cymbalariae
Eremothecium gossypii
Eremothecium sinecaudum
Fermentation
Hanseniaspora guilliermondii
Hanseniaspora occidentalis
Hanseniaspora osmophila
Hanseniaspora uvarum
Hanseniaspora valbyensis
Hanseniaspora vineae
Kazachstania africana
Kazachstania barnettii
Kazachstania bulderi
Kazachstania exigua
Kazachstania kunashirensis
Kazachstania lodderae
Kazachstania martiniae
Kazachstania piceae
Kazachstania rosinii
Kazachstania servazzii
Kazachstania sinensis
Kazachstania spencerorum
Kazachstania telluris
Kazachstania transvaalensis
Kazachstania turicensis
Kazachstania unispora
Kazachstania viticola
Kloeckera lindneri
Kluyveromyces aestuarii
Kluyveromyces dobzhanskii
Kluyveromyces lactis
Kluyveromyces marxianus
Kluyveromyces nonfermentans
Kluyveromyces wickerhamii
Lachancea cidri
Lachancea fermentati
Lachancea kluyveri
Lachancea thermotolerans
Lachancea waltii
Nakaseomyces bacillisporus
Nakaseomyces delphensis
Naumovozyma castellii
Naumovozyma dairenensis
Saccharomicotina
Saccharomyces bayanus
Saccharomyces cariocanus
Saccharomyces kudriavzevii
Saccharomyces mikatae
Saccharomyces paradoxus
Saccharomyces pastorianus
Saccharomycodes ludwigii
Schizosaccharomyces pombe
Tetrapisispora arboricola
Tetrapisispora blattae
Tetrapisispora iriomotensis
Tetrapisispora nanseiensis
Tetrapisispora phaffii
Torulaspora delbrueckii
Torulaspora franciscae
Torulaspora globosa
Torulaspora microellipsoides
Torulaspora pretoriensis
Vanderwaltozyma polyspora
Vanderwaltozyma yarrowii
Wickerhamomyces anomalus
Zygosaccharomyces bailii
Zygosaccharomyces bisporus
Zygosaccharomyces kombuchaensis
Zygosaccharomyces lentus
Zygosaccharomyces mellis
Zygosaccharomyces rouxii
Zygotorulaspora florentina
Zygotorulaspora mrakii
title Data from: A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Paleo-L%C3%B3pez,%20Roc%C3%ADo&rft.date=2017-03-17&rft_id=info:doi/10.5061/dryad.2hf06&rft_dat=%3Cdatacite_PQ8%3E10_5061_dryad_2hf06%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true