Measuring Inequality using Geospatial Data
The main challenge in studying economic inequality is limited data availability, which is particularly problematic in developing countries. We construct a measure of economic inequality for 234 countries/territories from 1992 to 2013 using satellite data on night lights and gridded population data....
Gespeichert in:
Veröffentlicht in: | IDEAS Working Paper Series from RePEc 2021 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main challenge in studying economic inequality is limited data availability, which is particularly problematic in developing countries. We construct a measure of economic inequality for 234 countries/territories from 1992 to 2013 using satellite data on night lights and gridded population data. Key methodological innovations include the use of varying levels of data aggregation, and a calibration of the lights-prosperity relationship to match traditional inequality measures based on income data. We obtain a measure that is significantly correlated with cross-country variation in income inequality. We provide three applications of the data in the fields of health economics and international finance. Our results show that light- and income-based inequality measures lead to similar results in terms of cross-country correlations, but not for the dynamics of inequality within countries. Namely, we find that the light-based inequality measure can capture more enduring features of economic activity that are not directly captured by income. |
---|---|
DOI: | 10.3929/ethz-b-000473903 |