SO(3) "Nuclear Physics" with ultracold Gases
An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental $SU(3)$ gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an $SO(3)$ lattice gauge theory as a toy model for...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 483 (2018). doi:10.1016/j.aop.2018.03.020 |
---|---|
container_issue | |
container_start_page | 466 |
container_title | |
container_volume | |
creator | Rico, E. Dalmonte, M. Zoller, P. Banerjee, D. Bögli, M. Stebler, P. Wiese, U.-J. |
description | An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental $SU(3)$ gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an $SO(3)$ lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin $S = \frac{3}{2}$ Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism. |
doi_str_mv | 10.3204/pubdb-2018-02032 |
format | Report |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_3204_pubdb_2018_02032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3204_pubdb_2018_02032</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_3204_pubdb_2018_020323</originalsourceid><addsrcrecordid>eNqdzrsKwjAYQOEMCtbL7hg6KRj9k1Sps3iZVNA9pGmkkYglF6RvLy0-gdOZDnwITSksOYNsVceiLAgDmhNgwFkPJQDASbalmwEaev8EoDRb5wla3C4zPsfpOSqrpcPXqvFG-RR_TKhwtMFJ9bYlPkqv_Rj1H9J6Pfl1hOCwv-9OpJRBKhO0qJ15SdcICqKViE4iWonoJPyP5Qs6VDzz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>SO(3) "Nuclear Physics" with ultracold Gases</title><source>DataCite</source><creator>Rico, E. ; Dalmonte, M. ; Zoller, P. ; Banerjee, D. ; Bögli, M. ; Stebler, P. ; Wiese, U.-J.</creator><creatorcontrib>Rico, E. ; Dalmonte, M. ; Zoller, P. ; Banerjee, D. ; Bögli, M. ; Stebler, P. ; Wiese, U.-J.</creatorcontrib><description>An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental $SU(3)$ gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an $SO(3)$ lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin $S = \frac{3}{2}$ Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.</description><identifier>ISSN: 0003-4916</identifier><identifier>ISSN: 1096-035X</identifier><identifier>DOI: 10.3204/pubdb-2018-02032</identifier><language>eng</language><publisher>Deutsches Elektronen-Synchrotron, DESY, Hamburg</publisher><creationdate>2018</creationdate><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0244-4337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,1893,4489,27924</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.3204/pubdb-2018-02032$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org</linktorsrc></links><search><creatorcontrib>Rico, E.</creatorcontrib><creatorcontrib>Dalmonte, M.</creatorcontrib><creatorcontrib>Zoller, P.</creatorcontrib><creatorcontrib>Banerjee, D.</creatorcontrib><creatorcontrib>Bögli, M.</creatorcontrib><creatorcontrib>Stebler, P.</creatorcontrib><creatorcontrib>Wiese, U.-J.</creatorcontrib><title>SO(3) "Nuclear Physics" with ultracold Gases</title><addtitle>Annals of physics 393</addtitle><description>An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental $SU(3)$ gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an $SO(3)$ lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin $S = \frac{3}{2}$ Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.</description><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2018</creationdate><recordtype>report</recordtype><sourceid>PQ8</sourceid><recordid>eNqdzrsKwjAYQOEMCtbL7hg6KRj9k1Sps3iZVNA9pGmkkYglF6RvLy0-gdOZDnwITSksOYNsVceiLAgDmhNgwFkPJQDASbalmwEaev8EoDRb5wla3C4zPsfpOSqrpcPXqvFG-RR_TKhwtMFJ9bYlPkqv_Rj1H9J6Pfl1hOCwv-9OpJRBKhO0qJ15SdcICqKViE4iWonoJPyP5Qs6VDzz</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Rico, E.</creator><creator>Dalmonte, M.</creator><creator>Zoller, P.</creator><creator>Banerjee, D.</creator><creator>Bögli, M.</creator><creator>Stebler, P.</creator><creator>Wiese, U.-J.</creator><general>Deutsches Elektronen-Synchrotron, DESY, Hamburg</general><scope>PQ8</scope><orcidid>https://orcid.org/0000-0003-0244-4337</orcidid></search><sort><creationdate>2018</creationdate><title>SO(3) "Nuclear Physics" with ultracold Gases</title><author>Rico, E. ; Dalmonte, M. ; Zoller, P. ; Banerjee, D. ; Bögli, M. ; Stebler, P. ; Wiese, U.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_3204_pubdb_2018_020323</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rico, E.</creatorcontrib><creatorcontrib>Dalmonte, M.</creatorcontrib><creatorcontrib>Zoller, P.</creatorcontrib><creatorcontrib>Banerjee, D.</creatorcontrib><creatorcontrib>Bögli, M.</creatorcontrib><creatorcontrib>Stebler, P.</creatorcontrib><creatorcontrib>Wiese, U.-J.</creatorcontrib><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rico, E.</au><au>Dalmonte, M.</au><au>Zoller, P.</au><au>Banerjee, D.</au><au>Bögli, M.</au><au>Stebler, P.</au><au>Wiese, U.-J.</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>SO(3) "Nuclear Physics" with ultracold Gases</btitle><addtitle>Annals of physics 393</addtitle><date>2018</date><risdate>2018</risdate><spage>466</spage><epage>483 (2018). doi:10.1016/j.aop.2018.03.020</epage><pages>466-483 (2018). doi:10.1016/j.aop.2018.03.020</pages><issn>0003-4916</issn><issn>1096-035X</issn><abstract>An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental $SU(3)$ gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an $SO(3)$ lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin $S = \frac{3}{2}$ Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.</abstract><pub>Deutsches Elektronen-Synchrotron, DESY, Hamburg</pub><doi>10.3204/pubdb-2018-02032</doi><orcidid>https://orcid.org/0000-0003-0244-4337</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0003-4916 |
ispartof | |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_datacite_primary_10_3204_pubdb_2018_02032 |
source | DataCite |
title | SO(3) "Nuclear Physics" with ultracold Gases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=SO(3)%20%22Nuclear%20Physics%22%20with%20ultracold%20Gases&rft.au=Rico,%20E.&rft.date=2018&rft.spage=466&rft.epage=483%20(2018).%20doi:10.1016/j.aop.2018.03.020&rft.pages=466-483%20(2018).%20doi:10.1016/j.aop.2018.03.020&rft.issn=0003-4916&rft_id=info:doi/10.3204/pubdb-2018-02032&rft_dat=%3Cdatacite_PQ8%3E10_3204_pubdb_2018_02032%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |