Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models

This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cheng, Xu, Dou, Winston Wei, Liao, Zhipeng 
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cheng, Xu
Dou, Winston Wei
Liao, Zhipeng 
description This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro-finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross-equation restrictions. For empirical application, we apply the proposed conditional specification test to evaluate a time-varying rare-disaster risk model and construct data-driven robust model uncertainty sets.
doi_str_mv 10.25740/sq684mr4896
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_25740_sq684mr4896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_25740_sq684mr4896</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_25740_sq684mr48963</originalsourceid><addsrcrecordid>eNpjYBAxNNAzMjU3MdAvLjSzMMktMrGwNONk8PJNTC7K13XLzEvMS05VcElNzi8tyMnMS7dSCMpPKi0uUXAtS8wpTSzJzM8rVshPUwCrV3AsLk4tUQgoykwGKlXwzU9JzSnmYWBNS8wpTuWF0twMOm6uIc4euimJJYnJmSWp8QVFmbmJRZXxhgbxYKfEIznFmETlAMQKQX8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models</title><source>DataCite</source><creator>Cheng, Xu ; Dou, Winston Wei ; Liao, Zhipeng </creator><creatorcontrib>Cheng, Xu ; Dou, Winston Wei ; Liao, Zhipeng </creatorcontrib><description>This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro-finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross-equation restrictions. For empirical application, we apply the proposed conditional specification test to evaluate a time-varying rare-disaster risk model and construct data-driven robust model uncertainty sets.</description><identifier>DOI: 10.25740/sq684mr4896</identifier><language>eng</language><publisher>Stanford Digital Repository</publisher><subject>conditional inference ; long-run risk ; model uncertainty ; rare disasters ; structural asset pricing ; weak identification</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.25740/sq684mr4896$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Dou, Winston Wei</creatorcontrib><creatorcontrib>Liao, Zhipeng </creatorcontrib><title>Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models</title><description>This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro-finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross-equation restrictions. For empirical application, we apply the proposed conditional specification test to evaluate a time-varying rare-disaster risk model and construct data-driven robust model uncertainty sets.</description><subject>conditional inference</subject><subject>long-run risk</subject><subject>model uncertainty</subject><subject>rare disasters</subject><subject>structural asset pricing</subject><subject>weak identification</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAxNNAzMjU3MdAvLjSzMMktMrGwNONk8PJNTC7K13XLzEvMS05VcElNzi8tyMnMS7dSCMpPKi0uUXAtS8wpTSzJzM8rVshPUwCrV3AsLk4tUQgoykwGKlXwzU9JzSnmYWBNS8wpTuWF0twMOm6uIc4euimJJYnJmSWp8QVFmbmJRZXxhgbxYKfEIznFmETlAMQKQX8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cheng, Xu</creator><creator>Dou, Winston Wei</creator><creator>Liao, Zhipeng </creator><general>Stanford Digital Repository</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2022</creationdate><title>Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models</title><author>Cheng, Xu ; Dou, Winston Wei ; Liao, Zhipeng </author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_25740_sq684mr48963</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>conditional inference</topic><topic>long-run risk</topic><topic>model uncertainty</topic><topic>rare disasters</topic><topic>structural asset pricing</topic><topic>weak identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Dou, Winston Wei</creatorcontrib><creatorcontrib>Liao, Zhipeng </creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Xu</au><au>Dou, Winston Wei</au><au>Liao, Zhipeng </au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models</title><date>2022</date><risdate>2022</risdate><abstract>This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro-finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross-equation restrictions. For empirical application, we apply the proposed conditional specification test to evaluate a time-varying rare-disaster risk model and construct data-driven robust model uncertainty sets.</abstract><pub>Stanford Digital Repository</pub><doi>10.25740/sq684mr4896</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.25740/sq684mr4896
ispartof
issn
language eng
recordid cdi_datacite_primary_10_25740_sq684mr4896
source DataCite
subjects conditional inference
long-run risk
model uncertainty
rare disasters
structural asset pricing
weak identification
title Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Cheng,%20Xu&rft.date=2022&rft_id=info:doi/10.25740/sq684mr4896&rft_dat=%3Cdatacite_PQ8%3E10_25740_sq684mr4896%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true