Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models
This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we pro...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Cheng, Xu Dou, Winston Wei Liao, Zhipeng |
description | This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro-finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross-equation restrictions. For empirical application, we apply the proposed conditional specification test to evaluate a time-varying rare-disaster risk model and construct data-driven robust model uncertainty sets. |
doi_str_mv | 10.25740/sq684mr4896 |
format | Dataset |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_25740_sq684mr4896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_25740_sq684mr4896</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_25740_sq684mr48963</originalsourceid><addsrcrecordid>eNpjYBAxNNAzMjU3MdAvLjSzMMktMrGwNONk8PJNTC7K13XLzEvMS05VcElNzi8tyMnMS7dSCMpPKi0uUXAtS8wpTSzJzM8rVshPUwCrV3AsLk4tUQgoykwGKlXwzU9JzSnmYWBNS8wpTuWF0twMOm6uIc4euimJJYnJmSWp8QVFmbmJRZXxhgbxYKfEIznFmETlAMQKQX8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models</title><source>DataCite</source><creator>Cheng, Xu ; Dou, Winston Wei ; Liao, Zhipeng </creator><creatorcontrib>Cheng, Xu ; Dou, Winston Wei ; Liao, Zhipeng </creatorcontrib><description>This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro-finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross-equation restrictions. For empirical application, we apply the proposed conditional specification test to evaluate a time-varying rare-disaster risk model and construct data-driven robust model uncertainty sets.</description><identifier>DOI: 10.25740/sq684mr4896</identifier><language>eng</language><publisher>Stanford Digital Repository</publisher><subject>conditional inference ; long-run risk ; model uncertainty ; rare disasters ; structural asset pricing ; weak identification</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1894</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.25740/sq684mr4896$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Dou, Winston Wei</creatorcontrib><creatorcontrib>Liao, Zhipeng </creatorcontrib><title>Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models</title><description>This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro-finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross-equation restrictions. For empirical application, we apply the proposed conditional specification test to evaluate a time-varying rare-disaster risk model and construct data-driven robust model uncertainty sets.</description><subject>conditional inference</subject><subject>long-run risk</subject><subject>model uncertainty</subject><subject>rare disasters</subject><subject>structural asset pricing</subject><subject>weak identification</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2022</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNpjYBAxNNAzMjU3MdAvLjSzMMktMrGwNONk8PJNTC7K13XLzEvMS05VcElNzi8tyMnMS7dSCMpPKi0uUXAtS8wpTSzJzM8rVshPUwCrV3AsLk4tUQgoykwGKlXwzU9JzSnmYWBNS8wpTuWF0twMOm6uIc4euimJJYnJmSWp8QVFmbmJRZXxhgbxYKfEIznFmETlAMQKQX8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cheng, Xu</creator><creator>Dou, Winston Wei</creator><creator>Liao, Zhipeng </creator><general>Stanford Digital Repository</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>2022</creationdate><title>Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models</title><author>Cheng, Xu ; Dou, Winston Wei ; Liao, Zhipeng </author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_25740_sq684mr48963</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2022</creationdate><topic>conditional inference</topic><topic>long-run risk</topic><topic>model uncertainty</topic><topic>rare disasters</topic><topic>structural asset pricing</topic><topic>weak identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Dou, Winston Wei</creatorcontrib><creatorcontrib>Liao, Zhipeng </creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Xu</au><au>Dou, Winston Wei</au><au>Liao, Zhipeng </au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models</title><date>2022</date><risdate>2022</risdate><abstract>This paper shows that robust inference under weak identification is important to the evaluation of many influential macro asset pricing models, including long-run risk models and (time-varying) rare-disaster risk models. Building on recent developments in the conditional inference literature, we provide a novel conditional specification test by simulating the critical value conditional on a sufficient statistic. This sufficient statistic can be intuitively interpreted as a measure capturing the macroeconomic information decoupled from the underlying content of asset pricing theories. Macro-finance decoupling is an effective way to improve the power of the specification test when asset pricing theories are difficult to refute because of a severe imbalance in the information content about the key model parameters between macroeconomic moment restrictions and asset pricing cross-equation restrictions. For empirical application, we apply the proposed conditional specification test to evaluate a time-varying rare-disaster risk model and construct data-driven robust model uncertainty sets.</abstract><pub>Stanford Digital Repository</pub><doi>10.25740/sq684mr4896</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.25740/sq684mr4896 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_25740_sq684mr4896 |
source | DataCite |
subjects | conditional inference long-run risk model uncertainty rare disasters structural asset pricing weak identification |
title | Macro-Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Cheng,%20Xu&rft.date=2022&rft_id=info:doi/10.25740/sq684mr4896&rft_dat=%3Cdatacite_PQ8%3E10_25740_sq684mr4896%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |