The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow

The peak conductance of many ion channel types measured in any given animal is highly variable across neurons, both within and between neuronal populations. The current view is that this occurs because a neuron needs to adapt its intrinsic electrophysiological properties either to maintain the same...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Migliore, Rosanna, Lupascu, Carmen A., Bologna, Luca L., Romani, Armando, Jean-Denis Courcol, Antonel, Stefano, Van Geit, Werner A.H., Thomson, Alex M., Mercer, Audrey, Lange, Sigrun, Falck, Joanne, Rössert, Christian A., Shi, Ying, Hagens, Olivier, Pezzoli, Maurizio, Freund, Tamas F., Kali, Szabolcs, Muller, Eilif B., Schürmann, Felix, Markram, Henry, Migliore, Michele
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Migliore, Rosanna
Lupascu, Carmen A.
Bologna, Luca L.
Romani, Armando
Jean-Denis Courcol
Antonel, Stefano
Van Geit, Werner A.H.
Thomson, Alex M.
Mercer, Audrey
Lange, Sigrun
Falck, Joanne
Rössert, Christian A.
Shi, Ying
Hagens, Olivier
Pezzoli, Maurizio
Freund, Tamas F.
Kali, Szabolcs
Muller, Eilif B.
Schürmann, Felix
Markram, Henry
Migliore, Michele
description The peak conductance of many ion channel types measured in any given animal is highly variable across neurons, both within and between neuronal populations. The current view is that this occurs because a neuron needs to adapt its intrinsic electrophysiological properties either to maintain the same operative range in the presence of abnormal inputs or to compensate for the effects of pathological conditions. Limited experimental and modeling evidence suggests this might be implemented via the correlation and/or degeneracy in the function of multiple types of conductances. To study this mechanism in hippocampal CA1 neurons and interneurons, we systematically generated a set of morphologically and biophysically accurate models. We then analyzed the ensembles of peak conductance obtained for each model neuron. The results suggest that the set of conductances expressed in the various neuron types may be divided into two groups: one group is responsible for the major characteristics of the firing behavior in each population and the other more involved with degeneracy. These models provide experimentally testable predictions on the combination and relative proportion of the different conductance types that should be present in hippocampal CA1 pyramidal cells and interneurons.
doi_str_mv 10.25493/ef9c-zku
format Dataset
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_25493_ef9c_zku</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_25493_ef9c_zku</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_25493_ef9c_zku3</originalsourceid><addsrcrecordid>eNqVjzFOAzEQRd2kQISCG0xLsSFLoEiJIqIcIL012OPsKLNjy95NslyFy-JFXIBq9Oe_XzxjHtv16uXtdbt5prB1zdd5vDPfx44gdVPhKPHEDgUumBk_WXiYIAZwHaqSgCct84sVOk4pOuxTpXfvLaQpY8--JkciBVB9xQbKSmOOWoBuSWImD2NhPQHCqBy4Zo8DNj7zhRT66Enm-hrzOUi8Ls0ioBR6-Lv35mn_cdwdmnnleCCbMveYJ9uu7a-YncVsFdv8h_0BnihgqA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><source>DataCite</source><creator>Migliore, Rosanna ; Lupascu, Carmen A. ; Bologna, Luca L. ; Romani, Armando ; Jean-Denis Courcol ; Antonel, Stefano ; Van Geit, Werner A.H. ; Thomson, Alex M. ; Mercer, Audrey ; Lange, Sigrun ; Falck, Joanne ; Rössert, Christian A. ; Shi, Ying ; Hagens, Olivier ; Pezzoli, Maurizio ; Freund, Tamas F. ; Kali, Szabolcs ; Muller, Eilif B. ; Schürmann, Felix ; Markram, Henry ; Migliore, Michele</creator><creatorcontrib>Migliore, Rosanna ; Lupascu, Carmen A. ; Bologna, Luca L. ; Romani, Armando ; Jean-Denis Courcol ; Antonel, Stefano ; Van Geit, Werner A.H. ; Thomson, Alex M. ; Mercer, Audrey ; Lange, Sigrun ; Falck, Joanne ; Rössert, Christian A. ; Shi, Ying ; Hagens, Olivier ; Pezzoli, Maurizio ; Freund, Tamas F. ; Kali, Szabolcs ; Muller, Eilif B. ; Schürmann, Felix ; Markram, Henry ; Migliore, Michele</creatorcontrib><description>The peak conductance of many ion channel types measured in any given animal is highly variable across neurons, both within and between neuronal populations. The current view is that this occurs because a neuron needs to adapt its intrinsic electrophysiological properties either to maintain the same operative range in the presence of abnormal inputs or to compensate for the effects of pathological conditions. Limited experimental and modeling evidence suggests this might be implemented via the correlation and/or degeneracy in the function of multiple types of conductances. To study this mechanism in hippocampal CA1 neurons and interneurons, we systematically generated a set of morphologically and biophysically accurate models. We then analyzed the ensembles of peak conductance obtained for each model neuron. The results suggest that the set of conductances expressed in the various neuron types may be divided into two groups: one group is responsible for the major characteristics of the firing behavior in each population and the other more involved with degeneracy. These models provide experimentally testable predictions on the combination and relative proportion of the different conductance types that should be present in hippocampal CA1 pyramidal cells and interneurons.</description><identifier>DOI: 10.25493/ef9c-zku</identifier><language>eng</language><publisher>EBRAINS</publisher><subject>Neuroscience</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,1888</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.25493/ef9c-zku$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Migliore, Rosanna</creatorcontrib><creatorcontrib>Lupascu, Carmen A.</creatorcontrib><creatorcontrib>Bologna, Luca L.</creatorcontrib><creatorcontrib>Romani, Armando</creatorcontrib><creatorcontrib>Jean-Denis Courcol</creatorcontrib><creatorcontrib>Antonel, Stefano</creatorcontrib><creatorcontrib>Van Geit, Werner A.H.</creatorcontrib><creatorcontrib>Thomson, Alex M.</creatorcontrib><creatorcontrib>Mercer, Audrey</creatorcontrib><creatorcontrib>Lange, Sigrun</creatorcontrib><creatorcontrib>Falck, Joanne</creatorcontrib><creatorcontrib>Rössert, Christian A.</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Hagens, Olivier</creatorcontrib><creatorcontrib>Pezzoli, Maurizio</creatorcontrib><creatorcontrib>Freund, Tamas F.</creatorcontrib><creatorcontrib>Kali, Szabolcs</creatorcontrib><creatorcontrib>Muller, Eilif B.</creatorcontrib><creatorcontrib>Schürmann, Felix</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><description>The peak conductance of many ion channel types measured in any given animal is highly variable across neurons, both within and between neuronal populations. The current view is that this occurs because a neuron needs to adapt its intrinsic electrophysiological properties either to maintain the same operative range in the presence of abnormal inputs or to compensate for the effects of pathological conditions. Limited experimental and modeling evidence suggests this might be implemented via the correlation and/or degeneracy in the function of multiple types of conductances. To study this mechanism in hippocampal CA1 neurons and interneurons, we systematically generated a set of morphologically and biophysically accurate models. We then analyzed the ensembles of peak conductance obtained for each model neuron. The results suggest that the set of conductances expressed in the various neuron types may be divided into two groups: one group is responsible for the major characteristics of the firing behavior in each population and the other more involved with degeneracy. These models provide experimentally testable predictions on the combination and relative proportion of the different conductance types that should be present in hippocampal CA1 pyramidal cells and interneurons.</description><subject>Neuroscience</subject><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2021</creationdate><recordtype>dataset</recordtype><sourceid>PQ8</sourceid><recordid>eNqVjzFOAzEQRd2kQISCG0xLsSFLoEiJIqIcIL012OPsKLNjy95NslyFy-JFXIBq9Oe_XzxjHtv16uXtdbt5prB1zdd5vDPfx44gdVPhKPHEDgUumBk_WXiYIAZwHaqSgCct84sVOk4pOuxTpXfvLaQpY8--JkciBVB9xQbKSmOOWoBuSWImD2NhPQHCqBy4Zo8DNj7zhRT66Enm-hrzOUi8Ls0ioBR6-Lv35mn_cdwdmnnleCCbMveYJ9uu7a-YncVsFdv8h_0BnihgqA</recordid><startdate>20210908</startdate><enddate>20210908</enddate><creator>Migliore, Rosanna</creator><creator>Lupascu, Carmen A.</creator><creator>Bologna, Luca L.</creator><creator>Romani, Armando</creator><creator>Jean-Denis Courcol</creator><creator>Antonel, Stefano</creator><creator>Van Geit, Werner A.H.</creator><creator>Thomson, Alex M.</creator><creator>Mercer, Audrey</creator><creator>Lange, Sigrun</creator><creator>Falck, Joanne</creator><creator>Rössert, Christian A.</creator><creator>Shi, Ying</creator><creator>Hagens, Olivier</creator><creator>Pezzoli, Maurizio</creator><creator>Freund, Tamas F.</creator><creator>Kali, Szabolcs</creator><creator>Muller, Eilif B.</creator><creator>Schürmann, Felix</creator><creator>Markram, Henry</creator><creator>Migliore, Michele</creator><general>EBRAINS</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20210908</creationdate><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><author>Migliore, Rosanna ; Lupascu, Carmen A. ; Bologna, Luca L. ; Romani, Armando ; Jean-Denis Courcol ; Antonel, Stefano ; Van Geit, Werner A.H. ; Thomson, Alex M. ; Mercer, Audrey ; Lange, Sigrun ; Falck, Joanne ; Rössert, Christian A. ; Shi, Ying ; Hagens, Olivier ; Pezzoli, Maurizio ; Freund, Tamas F. ; Kali, Szabolcs ; Muller, Eilif B. ; Schürmann, Felix ; Markram, Henry ; Migliore, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_25493_ef9c_zku3</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Neuroscience</topic><toplevel>online_resources</toplevel><creatorcontrib>Migliore, Rosanna</creatorcontrib><creatorcontrib>Lupascu, Carmen A.</creatorcontrib><creatorcontrib>Bologna, Luca L.</creatorcontrib><creatorcontrib>Romani, Armando</creatorcontrib><creatorcontrib>Jean-Denis Courcol</creatorcontrib><creatorcontrib>Antonel, Stefano</creatorcontrib><creatorcontrib>Van Geit, Werner A.H.</creatorcontrib><creatorcontrib>Thomson, Alex M.</creatorcontrib><creatorcontrib>Mercer, Audrey</creatorcontrib><creatorcontrib>Lange, Sigrun</creatorcontrib><creatorcontrib>Falck, Joanne</creatorcontrib><creatorcontrib>Rössert, Christian A.</creatorcontrib><creatorcontrib>Shi, Ying</creatorcontrib><creatorcontrib>Hagens, Olivier</creatorcontrib><creatorcontrib>Pezzoli, Maurizio</creatorcontrib><creatorcontrib>Freund, Tamas F.</creatorcontrib><creatorcontrib>Kali, Szabolcs</creatorcontrib><creatorcontrib>Muller, Eilif B.</creatorcontrib><creatorcontrib>Schürmann, Felix</creatorcontrib><creatorcontrib>Markram, Henry</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Migliore, Rosanna</au><au>Lupascu, Carmen A.</au><au>Bologna, Luca L.</au><au>Romani, Armando</au><au>Jean-Denis Courcol</au><au>Antonel, Stefano</au><au>Van Geit, Werner A.H.</au><au>Thomson, Alex M.</au><au>Mercer, Audrey</au><au>Lange, Sigrun</au><au>Falck, Joanne</au><au>Rössert, Christian A.</au><au>Shi, Ying</au><au>Hagens, Olivier</au><au>Pezzoli, Maurizio</au><au>Freund, Tamas F.</au><au>Kali, Szabolcs</au><au>Muller, Eilif B.</au><au>Schürmann, Felix</au><au>Markram, Henry</au><au>Migliore, Michele</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow</title><date>2021-09-08</date><risdate>2021</risdate><abstract>The peak conductance of many ion channel types measured in any given animal is highly variable across neurons, both within and between neuronal populations. The current view is that this occurs because a neuron needs to adapt its intrinsic electrophysiological properties either to maintain the same operative range in the presence of abnormal inputs or to compensate for the effects of pathological conditions. Limited experimental and modeling evidence suggests this might be implemented via the correlation and/or degeneracy in the function of multiple types of conductances. To study this mechanism in hippocampal CA1 neurons and interneurons, we systematically generated a set of morphologically and biophysically accurate models. We then analyzed the ensembles of peak conductance obtained for each model neuron. The results suggest that the set of conductances expressed in the various neuron types may be divided into two groups: one group is responsible for the major characteristics of the firing behavior in each population and the other more involved with degeneracy. These models provide experimentally testable predictions on the combination and relative proportion of the different conductance types that should be present in hippocampal CA1 pyramidal cells and interneurons.</abstract><pub>EBRAINS</pub><doi>10.25493/ef9c-zku</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.25493/ef9c-zku
ispartof
issn
language eng
recordid cdi_datacite_primary_10_25493_ef9c_zku
source DataCite
subjects Neuroscience
title The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Migliore,%20Rosanna&rft.date=2021-09-08&rft_id=info:doi/10.25493/ef9c-zku&rft_dat=%3Cdatacite_PQ8%3E10_25493_ef9c_zku%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true